公TDK

EPCOS Data Book 2013

Ferrites and Accessories

Ferrites and accessories

Important notes Contents	2 3	
Selector guide, Index of part numbers	10, 26	
SIFERRIT materials	33	
General – Definitions Application notes Processing notes	121 141 169	
Packing Quality and environment Standards and specifications	183 192 199	
RM cores PQ cores PM cores	201 269 288	
EP, EPX, EPO cores P cores P core halves for proximity switches (incl. PS cores)	303 335 387	
E cores ELP cores EQ cores, ER planar cores	399 456 488, 497	
ER cores ETD cores	509 517	
EFD cores EV cores	539 550	
U and UI cores Toroids (ring cores), Double-aperture cores Ferrite polymer composites	553 561, 603 605	
Cautions and warnings Symbols and terms, Subject index Get in Contact	609 611, 617 620	

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

		Page
Sele	ector guide	10
RM (cores	10
PQ o	cores	12
РМ (cores	13
EP o	cores	14
Рсо	res (pot cores)	15
Рсо	re halves and PS cores	17
Есо	res	18
ELP	cores	20
EQ d	cores	21
ER p	planar cores	22
ER d	cores	22
ETD	cores	23
EFD	, EV cores	24
U, U	Il cores	25
Toro	oids (ring cores)	25
Doul	ble-aperture cores	25
FPC	film	25
Inde	ex of part numbers	26
SIFE	ERRIT materials	33
1	Material application survey	34
2	Material properties	35
3	Measuring conditions	45
4	Specific material data	46
	DC magnetic bias	46
	Relative loss factor versus frequency	
	(inductors for resonant circuits and line attenuation)	47
	Relative inductance component versus frequency	48
	Performance factor versus frequency	49
	Standardized hysteresis material constant versus temperature	50
	Normalized impedance	50
Spe	cific data for K1	52
	K8	54
	K10	55
	M13	56
	M33	57
	N22	59
	N27	60
	N30	63

		Page
Specif	fic data for N41	65
	N45	68
	N48	70
	N49	72
	N51	75
	N72	78
	N87	81
	N88	84
	N92	88
	N95	91
	N96	94
	N97	97
	PC47	100
	T35	103
	T36	105
	T37	107
	T38	109
	T46	111
	T57	113
	T65	115
	T66	117
5	Plastic materials, manufacturers and UL numbers	119
Gene	ral – Definitions	121
1	Hysteresis	121
1.1	Hysteresis loop	121
1.2 1.2.1	Basic parameters of the hysteresis loop	122 122
1.2.1	Initial magnetization curve Saturation magnetization B _S	122
1.2.3	Remanent flux density $B_{\rm R}(H)$	122
1.2.4	Coercive field strength H _C	122
2	Permeability	123
2.1	Initial permeability μ _i	123
2.2	Effective permeability μ _e	123
2.3 2.4	Apparent permeability $\underline{\mu}_{app}$ Complex permeability $\underline{\mu}$	124 124
2.5	Reversible permeability μ_{rev}	125
2.6	Amplitude permeability μ_a , A_{L1} value	126
3	Magnetic core shape characteristics	127
3.1	Form factor	127
3.2	Inductance factor, A _L value	127
3.3	Tolerance code letters	128

		Page
4	Definition quantities in the small-signal range	129
4.1	Loss factor $\tan \delta$	129
4.2	Relative loss factor $\tan \delta/\mu_i$	129
4.3	Quality factor Q	130
4.4	Hysteresis loss resistance R_h and hysteresis material constant η_B	130
5	Definition quantities in the high-excitation range	131
5.1	Core losses P _V	131
5.2	Performance factor ($PF = f \cdot B_{max}$)	132
6	Influence of temperature	133
6.1	$\mu(T)$ curve, Curie temperature $T_{\mathbb{C}}$	133
6.2	Temperature coefficient of permeability α	133
6.3	Relative temperature coefficient α_{F}	133
6.4	Permeability factor	134
6.5	Effective temperature coefficient α _e	134
6.6	Relationship between the change in inductance and the permeability factor	134
6.7	Temperature dependence of saturation magnetization	134
6.8	Temperature dependence of saturation-dependent permeability	404
_	(amplitude permeability)	134
7	Disaccommodation	135
7.1	Disaccommodation coefficient d	135
7.2	Disaccommodation factor DF	135
8	General mechanical, thermal, electrical and magnetic properties of ferrites	136
8.1	Mechanical properties	136
8.2	Stress sensitivity of magnetic properties	137
8.3	Magnetostriction	138
8.4	Resistance to radiation	138 138
8.5	Resistivity ρ , dielectric constant ε	
9	Coil characteristics	140
	cation notes	141
1	Cores for filter applications	141
1.1	Gapped cores for filter/resonant circuits	141
1.2	P and RM cores with threaded sleeves	142
1.3	Typical calculation of a resonant circuit inductor	142
2	Cores for broadband transformers	144
2.1	Precision-ground, ungapped cores for broadband transformers	144
2.2	Fundamentals for broadband transformers	
	in the range 10 kHz to over 1 GHz – an example	144
2.3	Low-distortion transformers for digital data transmission (ISDN, xDSL)	145
3	Cores for LAN applications	148
3.1	Signal transformers	148
3.2	Common-mode chokes	149
3.3	Coating to ensure highest insulation resistance	149
4	Cores for EMI applications	150
4.1	Ring cores to suppress line interference	150
4.2	Common-mode chokes	151

		Page
4.3	NiZn ferrites	151
4.4	MnZn ferrites	152
5	Cores for inductive sensors	153
6	Cores for power applications	154
6.1	Core shapes and materials	154
6.2	Low-profile cores for planar magnetics	154
6.3	Correlation: Applications – core shape/material	155
6.3.1	Step-down converters	155
6.3.2	Single-ended flyback converter	156
6.3.3	Single-ended forward converter	157
6.3.4 6.3.5	Push-pull converter	158
6.4	Electronic lamp ballast device Selection of switch-mode power supply transformer cores	159 160
6.5	Selection tables: Power capacities	160
6.6	Thermal resistance for the main power transformer core shapes	168
	·	
	ssing notes	169
1	Gapped and ungapped ferrite cores	169
2	Processing notes for the manufacture of wound products	
	for small-signal and power applications	170
2.1	Winding design	170
	RM cores	171
	PQ cores	172
	PM cores EP cores	173 174
	P cores	174
	EFD cores	175
	ETD and ER cores	170
	E cores	178
	SMD types	179
2.2	Soldering/Inductor assembly	180
2.3	Design and processing information for SMD components	180
2.3.1	Automatic placement	180
2.3.2	Coplanarity	180
2.3.3	Solder paste application	181
2.4	Adhesive application and core mating	181
2.5	Holding jigs	182
2.6	Final adjustment	182
2.7	Hole arrangement	182
2.8	Creepage and clearance	182
Packir	ng	183
•	of packing modes	183
1	General information	184
1.1	Packing unit (PU)	184
1.2	Dispatch unit	184
1.3	Barcode label	184

		Page
2	Modes of packing	185
2.1	Blister tape	185
2.2	Tray (pallet)	185
2.2.1	Standard tray	185
2.2.2	Block packing	185
2.3	Container	186
2.3.1	Bag	186
2.3.2	Boxes	186
2.4	Packing for coil formers	186
2.5	Cardboard tray	186
3	Delivery modes for automatic processing	187
3.1	General information on inductor production	187
3.2	Cores in blister tape (strips)	187
3.3	Cores in blister tape (reeled)	189
3.4	Blister tapes	189
3.5	Dispenser pack	190
3.6	Skin packing	191
Quality	and environment	192
1	EPCOS quality system	192
1.1	Extract from EPCOS quality policy	192
1.2	Quality management system	192
1.3	Certification	192
1.4	Production sequence and quality assurance	192
1.5	Delivery quality	194
1.6	Failure criteria	194
1.7	Incoming goods inspection at the customer	194
1.8	Final inspection/approval for shipment	194
1.9	Reliability	194
1.10	Traceability	194
1.11	Electrical properties	194
1.12	Dimensions	194
1.13	Finish	195
1.14	AQL values	195
1.15	Barcode label	195
1.16	Conditions of use	196
1.17	Customer complaints	196
2	Environmental management system	197
2.1	Environmental policy	197
2.2	Environmental management system	197
2.3	Certification	197
2.4	RoHS	197
2.5	REACH	198
2.6 2.7	Banned and hazardous substances in components	198
	Material data sheets for product families	198
2.8	Disposal	198

	Page
Standards and specifications	199
1 IEC standards	199
1.1 Quality assessment	200
RM cores	201
General information	201
RM 4 through RM 14	203
PQ cores	269
General information	269
PQ 16/11.6 through PQ 50/50	270
PM cores	288
General information	288
1 Core losses	289
2 Tightening torque	289
PM 50/39 through PM 114/39	290
EP, EPX, EPO cores	303
General information	303
EP 5 through EP 20	305
P cores	335
General information	335
P 3.3 \times 2.6 through P 41 \times 25	336
P core halves for proximity switches (incl. PS cores)	387
General information	387
PS 7.35 \times 3.6 through P core half 150 \times 30	388
E cores	399
General information	399
E 5 through E 80/38/20	404
ELP cores	456
General information	456
ELP 14/3.5/5 through ELP 64/10/50	457
EQ cores	488
General information	488
EQ 13 through EQ 30	489

	Page
ER planar cores General information	497 497
ER 9.5/5 through ER 32	498
ER cores	509
General information	509
ER 28, ER 35 through ER 54	510
ETD cores	517
General information	517
ETD 29/16/10 through ETD 59/31/22	518
EFD cores	539
General information	539
EFD 10/5/3 through EFD 30/15/9	540
EV cores	550
EV 15/9/7 through EV 30/16/3	550
U and UI cores	553
General information	553
U 93/76/16 through U 141/78/30	554
Toroids (ring cores)	561
General information	561
Overview	563
R 2.5 through R 202	565
Toroids (ring cores) accessories	593
General information	593
Base plate for ring cores	595
Double aperture cores	603
Ferrite polymer composites	605
General information	605
C350, C351	606
Cautions and warnings	609
Symbols and terms	611
Ordering code structure	614
Versions (code letters) of RM, P and E cores	615
Subject index	617
Get in Contact	620

RM cores

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H 1)	Individual parts of assembly set	Part number	Page
RM 4	IEC 62317-4		Core	B65803	204
		10.16 ² × 10.8	Coil former	B65804	206
			Clamp	B65806	207
			Adjusting screws	B65539/	
				B65806	208
RM 4 LP	IEC 62317-4		Core	B65803	209
			Clamp	B65804	210
			Insulating washers	B65804	210
		14 × 17.5 × 8.1	Coil former/Clamp	B65804	211
RM 5	IEC 62317-4		Core	B65805	213
		$12.7^2 \times 10.8$	Coil former	B65806	215
			Clamp	B65806	216
			Insulating washers	B65806	216
		$16.5\times19\times10.6$	Coil former	B65822	217, 218
			Clamp	B65806	217, 218
			Adjusting screws	B65539/	
				B65806	219
RM 5 LP	IEC 62317-4	20 × 16 × 8	Core	B65805	220
RM 6	IEC 62317-4		Core	B65807	222
		$15.24^2 \times 12.8$	Coil former	B65808	224, 225
			Coil former for SMPS transf.	B65808	226
		$19.5\times25\times12.8$	Coil former for power appl.	B65808	227
			Clamp/Insulating washers	B65808	228
		19.6 × 22.2 × 13	Coil former	B65821	229
			Clamp	B65808	229
			Adjusting screws	B65659	230
RM 6 LP	IEC 62317-4		Core	B65807	231

¹⁾ Height above mounting plane

RM cores (continued)

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H 1)	Individual parts of assembly set	Part number	Page
RM 7	IEC 62317-4		Core	B65819	233
		17.78 ² × 13.8	Coil former	B65820	234
			Clamp/Insulating washers	B65820	235
			Adjusting screws	B65659	236
RM 7 LP	IEC 62317-4		Core	B65819	237
RM 8	IEC 62317-4		Core	B65811	239
		20.32 ² × 16.8	Coil former	B65812	241, 242
			Coil former for SMPS transf.	B65812	243
		26 × 30 × 16.8	Coil former for power appl.	B65812	244
			Clamp/Insulating washers	B65812	245
			Adjusting screw	B65812	246
RM 8 LP	IEC 62317-4		Core	B65811	247
			Clamp/Insulating washers	B65812	248
RM 10	IEC 62317-4		Core	B65813	250
		25.4 ² × 19	Coil former	B65814	252
		31 × 40 × 19	Coil former for power appl.	B65814	253
			Clamp/Insulating washers	B65814	254
			Adjusting screws	B65679	255
RM 10 LP	IEC 62317-4		Core	B65813	256
RM 12	IEC 62317-4		Core	B65815	258
		$30.48^2 \times 24.9$	Coil former	B65816	259
		$32\times45.7\times24.9$	Coil former for power appl.	B65816	260
			Clamp	B65816	261
RM 12 LP	IEC 62317-4		Core	B65815	262
RM 14	IEC 62317-4		Core	B65887	264
		$35.56^2 \times 30.5$	Coil former	B65888	265
		$44\times29\times30.5$	Coil former for power appl.	B65888	266
			Clamp/Insulating washer	B65888	267
RM 14 LP	IEC 62317-4		Core	B65887	268

¹⁾ Height above mounting plane

PQ cores

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H 1)	Individual parts of assembly set	Part number	Page
PQ 16/11.6	IEC 62317-13		Core	B65885A	270
PQ 20/16	IEC 62317-13		Core	B65875B	271
PQ 20/20	IEC 62317-13		Core	B65875A	272
PQ 26/20	IEC 62317-13		Core	B65877B	273
		27 × 30 × 25.2	Coil former	B65878E	274
PQ 26/25	IEC 62317-13		Core	B65877A	275
		27 × 30 × 29.3	Coil former	B65878E	276
PQ 32/20	IEC 62317-13		Core	B65879A	277
		32.3 × 34.3 × 20.2	Coil former	B65880E	278
PQ 32/30	IEC 62317-13		Core	B65879B	279
		33.2 × 34.7 × 33.1	Coil former	B65880E	280
PQ 35/35	IEC 62317-13		Core	B65881A	281
PQ 40/30	IEC 62317-13		Core	B65883B	282
PQ 40/40	IEC 62317-13		Core	B65883A	283
		40.3 × 42.3 × 45.3	Coil former	B65884E	284
PQ 50/40	IEC 62317-13		Core	B65981B	285
PQ 50/50	IEC 62317-13		Core	B65981A	286
		51.3 × 51.9 × 52.5	Coil former	B65982E	287

¹⁾ Height above mounting plane

PM cores

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H 1)	Individual parts of assembly set	Part number	Page
PM 50/39	IEC 61247		Core	B65646	290
		65 × 52 × 45	Coil former	B65647	291
			Mounting assembly	B65647	292
PM 62/49	IEC 61247		Core	B65684	293
		76 × 64 × 55	Coil former	B65685	294
			Mounting assembly	B65685	295
PM 74/59	IEC 61247		Core	B65686	296
		$85.5\times75\times65$	Coil former	B65687	297
			Mounting assembly	B65687	298
PM 87/70	IEC 61247		Core	B65713	299
		101 × 87 × 72	Coil former	B65714	300
PM 114/93	IEC 61247		Core	B65733	301
		114 × 92 × 93	Coil former	B65734	302

¹⁾ Height above mounting plane

EP cores

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H 1)	Individual parts of assembly set	Part number	Page
EP 5			Core	B65855A	305
EP 6			Core	B65855B	306
EP 7	IEC 61596		Core	B65839	307
		$7.5 \times 10 \times 10$	Coil former/Cap yoke	B65840	309
		13 × 9.2 × 8.8	Coil former	B65840	310
EPX 7/9			Core	B65857A	311
		$12.6\times9.4\times12.4$	Coil former	B65858	313
EPX 9/9			Core	B65857C	314
EP 10	IEC 61596		Core	B65841	316
		12 × 14.2 × 12.5	Coil former	B65842	318
			Mounting assembly	B65842	319
EPX 10			Core	B65859	320
EP 13	IEC 61596		Core	B65843A	321
		$15\times16\times13.7$	Coil former	B65844	323
		$15\times16\times13.7$	Coil former for high-voltage		
			applications	B65844	324
			Mounting assembly	B65844	325
EPO 13	-		Core	B65843P	326
		$15 \times 16 \times 13.7$	Coil former	B65844	327
		15 × 16 × 13.7	Coil former for high-voltage applications	B65844	328
EP 17	IEC 61596		Core	B65845	329
		20 × 21.6 × 16.2	Coil former	B65846	330
			Mounting assembly	B65846	331
EP 20	IEC 61596		Core	B65847	332
		23 × 27.5 × 20.5	Coil former	B65848	333
			Mounting assembly	B65848	334
	1		_ ,		

¹⁾ Height above mounting plane

P cores (pot cores)

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H ¹⁾	Individual parts of assembly set	Part number	Page
P 3.3 × 2.6	IEC 62323		Core	B65491	336
P 4.6 × 4.1			Core	B65495	337
P 5.8 × 3.3	IEC 62323		Core	B65501	338
P 7 × 4			Core	B65511	340
		$7.5\times7.5\times7.1$	Coil former	B65512	341
			Mounting assembly	B65512	342
P 9 × 5	IEC 60133		Core	B65517	344
		$9.9 \times 9.9 \times 8.3$ (4 solder terminals)	Coil former	B65522	345
		9.9 × 12.3 × 8.3 (6 solder terminals)			
		12.2 × 17 × 6.0	Coil former	B65524	346
			Mounting assembly	B65518	347
P 11 × 7	IEC 60133		Core	B65531	349
			Coil former	B65532	350
		$12.3 \times 12.3 \times 9.5$ (4 solder terminals)	Mounting assembly	B65535	351
		$12.3 \times 14.6 \times 9.5$ (8 solder terminals)			
			Adjusting screws	B65539 B65806	352
P 14 × 8	IEC 60133		Core	B65541	354
		$16.8 \times 15 \times 11.3$ (4 solder terminals)	Coil former	B65542	355
		16.8 × 19.6 × 11.3 (6 solder terminals)	Mounting assembly	B65545	356
			Adjusting screws	B65549	357
P 18 × 11	IEC 60133		Core	B65651	359
		19.9 × 20.7 × 13.5	Coil former	B65652	360
			Mounting assembly	B65655	361
			Adjusting screws	B65659	362

¹⁾ Height above mounting plane

P cores (pot cores) (continued)

Core type	Standards	Mounting dimensions (mm) of assembly set Base area × H ¹⁾	Individual parts of assembly set	Part number	Page
P 22 × 13	IEC 60133		Core	B65661	364
		24.5 × 26 × 16.6	Coil former	B65662	365
			Adjusting screw	B65812	366
P 26 × 16	IEC 60133		Core	B65671	368
		27.8 × 28.5 × 19	Coil former	B65672	369
			Mounting assembly	B65675	370
			Adjusting screws	B65679	371
P 30 × 19	IEC 60133		Core	B65701	373
		32.5 × 33.5 × 22.8	Coil former	B65702	374
			Mounting assembly	B65705	375
			Adjusting screws	B65679	376
P 36 × 22			Core	B65611	378
		40 × 41.8 × 27.5	Coil former	B65612	379
			Mounting assembly	B65615	380
			Adjusting screws	B65679	381
P 41 × 25			Core	B65621	383
			Mounting assembly	B65623	384

¹⁾ Height above mounting plane

P core halves and PS cores

Core type (∅ × height)	Standards	Material	Individual parts of assembly set	Part number	Page
PS 7.35 × 3.6	IEC 62323	N22, M33	Core	B65933	388
			Coil former	B65512	388
PS 9 × 3.5	IEC 62323	N22, M33	Core	B65935	389
			Coil former	B65936	389
PCH 14 × 7.5		N22	Core	B65937	390
			Coil former	B65542	390
PS 25 × 8.9	IEC 62323	N22	Core	B65939	391
			Coil former	B65940	391
PS 30.5 × 10.2	IEC 62323	N22	Core	B65941	392
			Coil former	B65942	392
PS 35 × 10.8	IEC 62323	N22	Core	B65947	393
PS 47 × 14.9	IEC 62323	N22	Core	B65943	394
PS 68 × 14.5	IEC 62323	N22	Core	B65928	395
			Coil former	B65946	395
PCH 70 × 14.5		N22	Core	B65945	396
			Coil former	B65946	396
PCH 150 × 30		N27	Core	B65949	397

E cores

Core type ¹⁾	Standards	Mounting dimensions (mm) of assembly set	Individual parts of assembly set	Part number	Page
		L × W × H ²)			
E 5	IEC 61246		Core	B66303	404
E 6.3	IEC 61246		Core	B66300	405
		$9 \times 8 \times 5.7$	Coil former/Cover cap	B66301	406
E 8.8	IEC 61246		Core	B66302	407
		$10\times12.5\times5.5$	Coil former/Cover cap	B66302	408
E 10/5.5/5			Core	B66322	409
E 13/7/4	IEC 61246		Core	B66305	410
(EF 12.6)		15 × 17 × 12	Coil former (horizontal)	B66202	411
		$10\times15\times17$	Coil former (vertical)	B66202	412
			Yoke	B66202	412
		$13.5\times19.5\times9.3$	Coil former	B66306	413
			Cover plate	B66414	414
E 14/8/4			Core	B66219	415
E 16/6/5			Core	B66393	416
E 16/8/5	IEC 61246		Core	B66307	417
(EF 16)		18 × 20 × 14	Coil former (horizontal)	B66308	419
		11 × 18 × 20	Coil former (vertical)	B66308	420
			Yoke	B66308	420
E 19/8/5			Core	B66379	421
E 20/10/6	IEC 61246		Core	B66311	422
(EF 20)		$22\times22\times17$	Coil former (horizontal)	B66206	423
		$15\times22\times24$	Coil former (vertical)	B66206	423
		$24\times21.5\times14$	Coil former (right-angle pins)	B66206	424
			Yoke	B66206	425
		$15\times22\times24$	Coil former for luminaires	B66206	426
			Yoke	B66206	426
E 21/9/5			Core	B66314	427
E 25/13/7	IEC 61246		Core	B66317	428
(EF 25)		$28\times28\times21$	Coil former (horizontal)	B66208	429
		18 × 28 × 29	Coil former (vertical)	B66208	430
			Yoke	B66208	430
		$19\times26\times30$	Coil former for SMPS	B66208	431
			Yoke	B66208	431

¹⁾ The E core designations have been brought into line with IEC; the previous designations are given in parentheses.

²⁾ Height above mounting plane

E cores (continued)

Core type ¹⁾	Standards	Mounting dimensions (mm) of assembly set L × W × H ²⁾	Individual parts of assembly set	Part number	Page
E 25.4/10/7			Core	B66315	432
E 30/15/7			Core	B66319	433
		36 × 36 × 12	Coil former (horizontal)	B66232	434
		19 × 36 × 36	Coil former (vertical)	B66232	434
			Yoke	B66232	434
E 32/16/9	IEC 61246		Core	B66229	436
(EF 32)		35 × 37 × 24	Coil former	B66230	437
			Yoke	B66230	437
E 32/16/11			Core	B66233	438
E 34/14/9			Core	B66370	439
E 36/18/11			Core	B66389	440
		39 × 38 × 31	Coil former	B66390	441
E 40/16/12			Core	B66381	442
E 42/21/15	IEC 61246		Core	B66325	443
E 42/21/20	IEC 61246		Core	B66329	444
		38 × 46 × 52	Coil former	B66243	445, 446
E 47/20/16			Core	B66383	447
E 55/28/21	IEC 61246		Core	B66335	448
E 55/28/25			Core	B66344	449
E 56/24/19			Core	B66385	450
E 65/32/27			Core	B66387	451
			Coil former	B66388	452
E 70/33/32			Core	B66371	453
			Coil former	B66372	454
E 80/38/20			Core	B66375	455

¹⁾ The E core designations have been brought into line with IEC; the previous designations are given in parentheses.

²⁾ Height above mounting plane

ELP cores

Core set Standards		Core types	Individual	Part numbe	Part number	
			parts of assembly set	with clamp recess	w/o clamp recess	
EELP 14	IEC 62317-9	ELP 14/3.5/5	ELP core		B66281G	457
EILP 14	IEC 62317-9	I 14/1.5/5 (+ ELP 14/3.5/5)	I core		B66281P, B66281K	458
EELP 18	IEC 62317-9	ELP 18/4/10	ELP core	B66283G	B66453G	459, 460
			Clamp	B65804		461
EILP 18	IEC 62317-9	I 18/2/10	I core	B66283P, B66283K	B66453P, B66453K	460, 462
		(+ ELP 18/4/10)	Clamp	B66284		461
EELP 22	IEC 62317-9	ELP 22/6/16	ELP core	B66285G	B66455G	464, 465
EILP 22	IEC 62317-9	I 22/2.5/16	I core	B66285P, B66285K	B66455P, B66455K	465, 467
		(+ ELP 22/6/16)	Clamp	B65804		466
EELP 32	IEC 62317-9	ELP 32/6/20	ELP core	B66287G	B66457G	469, 470
			Clamp	B65808		469
EILP 32	IEC 62317-9	I 32/3/20 (+ ELP 32/6/20)	I core	B66287P, B66287K	B66457P, B66457K	470, 472
			Clamp	B66288		471
EELP 38	IEC 62317-9	ELP 38/8/25	ELP core	B66289G	B66459G	474, 476
EILP 38	IEC 62317-9	I 38/4/25 (+ ELP 38/8/25)	I core	B66289P, B66289K	B66459P, B66459K	475, 477
EELP 43	IEC 62317-9	ELP 43/10/28	ELP core	B66291G	B66461G	478, 480
EILP 43	IEC 62317-9	I 43/4/28 (+ ELP 43/10/28)	I core	B66291P, B66291K	B66461P, B66461K	479, 481
EELP 58	IEC 62317-9	ELP 58/11/38	ELP core		B66293G	482
EILP 58	IEC 62317-9	I 58/4/38 (+ ELP 58/11/38)	I core		B66293P, B66293K	483
EELP 64	IEC 62317-9	ELP 64/10/50	ELP core		B66295G	484
EILP 64	IEC 62317-9	I 64/5/50 (+ ELP 64/10/50)	I core		B66295P, B66295K	485
EELP 102	IEC 62317-9	ELP 102/20/38	ELP core		B66297G	486
EILP 102	IEC 62317-9	I 102/20/38 (+ ELP 102/20/38	I core		B66297P	487

EQ cores

Core set	Standards	Core types	Individual parts of assembly set	Part number	Page
EEQ 13	IEC 62317-9	EQ 13/2.85/9	Core	B66479	489
EIQ 13	IEC 62317-9	EQ 13/2.85/9	EQ core	B66479G	490
		+ I 13/1/9	I core	B66479P	490
EEQ 20	IEC 62317-9	EQ 20/6.3/14	Core	B66483	491
EIQ 20	IEC 62317-9	EQ 20/6.3/14	EQ core	B66483G	492
		+ I 20/2.3/14	I core	B66483P	492
EEQ 25	IEC 62317-9	EQ 25/8/18	Core	B66481	493
EIQ 25	IEC 62317-9	EQ 25/8/18	EQ core	B66481G	494
		+ I 25/2.3/18	I core	B66481P	494
EEQ 30	IEC 62317-9	EQ 30/8/20	Core	B66506	495
EIQ 30	IEC 62317-9	EQ 30/8/20	EQ core	B66506G	496
		+ I 30/2.7/20	I core	B66506P	496

ER planar cores

Core types	Standards	Mounting dimensions (mm) of assembly set L × W × H 1)	Individual parts of assembly set	Part number	Page
ER 9.5/5	IEC 62317-9		Core	B65523	498
		12 × 10 × 5.7	Coil former	B65527	499
			Yoke	B65527	499
ER 11/5	IEC 62317-9		Core	B65525	500
		12.8 × 11.7 × 6	Coil former	B65526	501
			Yoke	B65526	501
ER 14.5/6	IEC 62317-9		Core	B65513	502
ER 18/3/10	IEC 62317-9		Core	B66480	503
ER 23/5/13	IEC 62317-9		Core	B66482	504
ER 23/5/13	IEC 62317-9		ER core	B66482G	505
+ I 23/2/13			I core	B66482P	505
ER 25/6/15	IEC 62317-9		Core	B66484	506
ER 25/6/15	IEC 62317-9		ER core	B66484G	507
+ I 25/3/15			I core	B66484P	507
ER 32/5/21	IEC 62317-9		Core	B66501	508

ER cores

Core types	Standards	Mounting dimensions (mm) of assembly set L × W × H ¹⁾	Individual parts of assembly set	Part number	Page
ER 28/17/11	IEC 62317-7		Core	B66433	510
ER 35/20/11	IEC 62317-7		Core	B66350	511
ER 42/22/15			Core	B66347	512
		33 × 46 × 55	Coil former	B66348	513
ER 46/17/18			Core	B66377	514
ER 49/27/17	IEC 62317-7		Core	B66391	515
ER 54/18/18			Core	B66357	516

¹⁾ Height above mounting plane

ETD cores

Core type	Standards	Mounting dimensions (mm) of assembly set L × W × H ¹⁾	Individual parts of assembly set	Part number	Page
ETD 29/16/10	IEC 61185		Core	B66358	518
		35.5 × 35.5 × 25.5	Coil former (horizontal)	B66359	519
		24 × 35.5 × 41.2	Coil former (vertical)	B66359	520
			Yoke	B66359	519, 520
ETD 34/17/11	IEC 61185		Core	B66361	521
		43 × 40 × 35	Coil former (horizontal)	B66362	523
		$27.5\times40\times46$	Coil former (vertical)	B66362	524
			Yoke	B66362	523, 524
ETD 39/20/13	IEC 61185		Core	B66363	525
		48 × 45 × 38	Coil former/Yoke	B66364	526
ETD 44/22/15	IEC 61185		Core	B66365	527
		53 × 50 × 41	Coil former/Yoke	B66366	529
ETD 49/25/16	IEC 61185		Core	B66367	530
		58 × 55 × 43.5	Coil former/Yoke	B66368	532
ETD 54/28/19	IEC 61185		Core	B66395	533
		62 × 62 × 47	Coil former/Yoke	B66396	535
ETD 59/31/22	IEC 61185		Core	B66397	536
		67 × 71 × 50	Coil former/Yoke	B66398	538

¹⁾ Height above mounting plane

EFD, EV cores

Core type	Mounting dimensions (mm) of assembly set L × W × H 1)	Individual parts of assembly set	Part number	Page
EFD cores				
EFD 10/5/3		Core	B66411	540
EFD 15/8/5		Core	B66413	541
	19.3 × 17 × 8	Coil former/Yoke	B66414	542
	21 × 16 × 8	Coil former/Yoke	B66414	543
		Cover plate	B66414	543
EFD 20/10/7		Core	B66417	544
	24.3 × 22 × 10	Coil former/Yoke	B66418	545
EFD 25/13/9		Core	B66421	546
	29.3 × 27.3 × 12.5	Coil former/Yoke	B66422	547
EFD 30/15/9		Core	B66423	548
	34.4 × 32.5 × 12.5	Coil former/Yoke	B66424	549
EV cores				·
EV 15/9/7		Core	B66434	550
EV 25/13/13		Core	B66408	551
EV 30/16/13		Core	B66432	552

¹⁾ Height above mounting plane

U, UI cores

Core set	Core types	Part number	Page
UU 93/152/16 U 93/76/16		B67345B0003	554
UI 93/104/16	I 93/28/16	B67345B0004	
	(+ U 93/76/16)		
UU 93/152/20	U 93/76/20	B67345B0010	555
UI 93/104/20	I 93/28/20	B67345B0011	
	(+ U 93/76/20)		
UU 93/152/30	U 93/76/30	B67345B0001	556
UI 93/104/30	I 93/28/30	B67345B0002	
	(+ U 93/76/30)		
	U 101/76/30	B67370	557
UU 126/182/20	U 126/91/20	B67385G	558
UI 126/119/20	I 126/28/20	B67385P	
	(+ U 126/91/20)		
	U 141/78/30	B67374	559

Toroids (ring cores)

Toroids	Technical report	B64290	565
R 2.5 R 202	IEC/TR 61604		

Double-aperture cores

Core height	6.2; 8.3 and 14.5:	B62152	603
2.0 14.5 mm	DIN 41279, shape G		

FPC film

Material	Part number	Page
C 350, C 351	B68450, B68451, B68452	605

(In numerical order)

Part number	Page	Туре	
B62152	603	Double-aperture cores	
B64290	563	Toroids (ring cores)	
B65491	336	P 3.3 × 2.6 core	
B65495	337	P 4.6 × 4.1 core	
B65501	338	P 5.8 × 3.3 core	
B65511	340	P 7 × 4 core	
B65512	341, 342, 388	P 7×4 coil former, mounting assembly, PS 7.35×3.6 core, coil former	
B65513	502	ER 14.5/6 core	
B65517	344	P 9 × 5 core	
B65518	347	P 9 × 5 mounting assembly	
B65522	345	P 9 × 5 coil former, insulating washer	
B65523	498	ER 9.5 core	
B65524	346	P 9 × 5 coil former (SMD)	
B65525	500	ER 11/5 core	
B65526	501	ER 11/5 coil former (SMD), yoke	
B65527	499	ER 9.5 coil former (SMD), yoke	
B65531	349	P 11 × 7 core	
B65532	350	P 11 × 7 coil former	
B65535	351	P 11 × 7 mounting assembly	
B65539	208, 219, 352	Adjusting screw for RM 4, RM 5, P 11 × 7	
B65541	354	P 14 × 8 core	
B65542	355, 390	P 14 \times 8 coil former, insulating washer, P core half 14 \times 7.5 coil former	
B65545	356	P 14 × 8 mounting assembly	
B65549	357	P 14 × 8 adjusting screw	
B65611	378	P 36 × 22 core	
B65612	379	P 36 × 22 coil former, insulating washer	
B65615	380	P 36 × 22 mounting assembly	
B65621	383	P 41 × 25 core	
B65623	384	P 41 × 25 mounting assembly	
B65646	290	PM 50/39 core	
B65647	291, 292	PM 50/39 coil former, mounting assembly	
B65651	359	P 18 × 11 core	
B65652	360	P 18 × 11 coil former, insulating washer	
B65655	361	P 18 × 11 mounting assembly	
B65659	230, 236, 362	Adjusting screw for RM 6, RM 7, P 18 × 11	
B65661	364	P 22 × 13 core	
B65662	365	P 22 × 13 coil former, insulating washer	

Part number	Page	Туре		
B65671	368	P 26 × 16 core		
B65672	369	P 26 \times 16 coil former, insulating washer		
B65675	370	P 26 × 16 mounting assembly		
B65679	255, 371, 376, 381	Adjusting screw for RM 10, P 26 \times 16, P 30 \times 19, P 36 \times 22		
B65684	293	PM 62/49 core		
B65685	294, 295	PM 62/49 coil former, mounting assembly		
B65686	296	PM 74/59 core		
B65687	297, 298	PM 74/59 coil former, mounting assembly		
B65701	373	P 30 × 19 core		
B65702	374	P 30 × 19 coil former, insulating washer		
B65705	375	P 30 × 19 mounting assembly		
B65713	299	PM 87/70 core		
B65714	300	PM 87/70 coil former		
B65733	301	PM 114/93 core		
B65734	302	PM 114/93 coil former		
B65803	204, 209	RM 4 core, RM 4 low-profile core		
B65804	206, 210, 211	RM 4 coil former, insulating washer, RM 4 low-profile clamp, insulating washer, coil former (SMD)		
	459, 466	ELP 18, ELP 22 clamp		
B65805	213, 220	RM 5 core, RM 5 low-profile core		
B65806	207, 208	RM 4 clamp, adjusting screw		
	215, 216 217, 218, 219	RM 5 coil former, clamp, insulating washer RM 5 clamp (SMD), adjusting screw		
	352	Adjusting screw for P 11 × 7		
B65807	222, 231	RM 6 core, RM 6 low-profile core		
B65808	224 229	RM 6 coil former, clamp, insulating washer		
	469	ELP 32 clamp		
B65811	239, 247	RM 8 core, RM 8 low-profile core		
B65812	241 246 248, 366	RM 8 coil former, clamp, insulating washer, adjusting screw RM 8 low-profile clamp, insulating washer, P 22 \times 13 adjusting screw		
B65813	250, 256	RM 10 core, RM 10 low-profile core		
B65814	252, 253, 254	RM 10 coil former, clamp, insulating washer		
B65815	258, 262	RM 12 core, RM 12 low-profile core		
B65816	259, 260	RM 12 coil former		
B65819	233, 237	RM 7 core, RM 7 low-profile core		
B65820	234, 235	RM 7 coil former, clamp, insulating washer		
B65821	229	RM 6 coil former (SMD)		
	217, 218	RM 5 coil former (SMD)		

Part number	Page	Туре		
B65839	307	EP 7 core		
B65840	309, 310	EP 7 coil former, cap yoke, EP 7 coil former (SMD)		
B65841	316	EP 10 core		
B65842	318, 319	EP 10 coil former, mounting assembly		
B65843	321, 326	EP 13 core, EPO 13 core		
B65844	323 325 327, 328	EP 13 coil former, mounting assembly EPO 13 coil former		
B65845	329	EP 17 core		
B65846	330, 331	EP 17 coil former, mounting assembly		
B65847	332	EP 20 core		
B65848	333, 334	EP 20 coil former, mounting assembly		
B65855A	305	EP 5 core		
B65855B	306	EP 6 core		
B65857A	311	EPX 7/9 core		
B65858	313	EPX 7/9 coil former		
B65857C	314	EPX 9/9 core		
B65859	320	EPX 10 core		
B65875A	272	PQ 20/20 core		
B65875B	271	PQ 20/16 core		
B65877A	275	PQ 26/25 core		
B65877B	273	PQ 26/20 core		
B65878E	276, 274	PQ 26/25 coil former, PQ 26/20 coil former		
B65879A	277	PQ 32/20 core		
B65879B	279	PQ 32/30 core		
B65880E	278, 280	PQ 32/20 coil former, PQ 32/30 coil former		
B65881A	281	PQ 35/35 core		
B65883A	283	PQ 40/40 core		
B65883B	282	PQ 40/30 core		
B65884E	284	PQ 40/40 coil former		
B65885A	270	PQ 16/11.6 core		
B65887	264, 268	RM 14 core, RM 14 low-profile core		
B65888	265, 266, 267	RM 14 coil former, clamp, insulating washer		
B65928	395	PS core 68 × 14.5		
B65933	388	PS core 7.35 × 3.6		
B65935	389	PS core 9 × 3.5		
B65936	389	PS core 9 × 3.5 coil former		
B65937	390	P core half 14 × 7.5		
B65939	391	PS core 25 × 8.9		

Part number		Туре		
B65940	391	PS core 25 × 8.9 coil former		
B65941	392	PS core 30.5 × 10.2		
B65942	392	PS core 30.5×10.2 coil former		
B65943	394	PS core 47 × 14.9		
B65945	396	P core half 70 × 14.5		
B65946	395, 396	P core half 68×14.5 coil former, P core half 70×14.5 coil former		
B65947	393	PS core 35 × 10.8		
B65949	397	P core half 150 × 30		
B65981A	286	PQ 50/50 core		
B65981B	285	PQ 50/40 core		
B65982E	287	PQ 50/50 coil former		
B66202	411, 412	E 13/7 coil former, yoke		
B66206	423 426	E 20/10 coil former, yoke		
B66208	429 431	E 25/13 coil former, yoke		
B66219	415	E 14/8 core		
B66229	436	E 32/16 core		
B66230	437	E 32/16 coil former, yoke		
B66232	434	E 30/15 coil former, yoke		
B66233	438	E 32/16 core		
B66243	445, 446	E 42/21 coil former		
B66281	457, 458	ELP14/3.5 core, I 14/1.5 core		
B66283	459, 460	ELP18/4 core, I 18/2 core		
B66284	460	EILP 18 clamp		
B66285	464, 465	ELP 22/6 core, I 22/2.5 core		
B66287	469, 470	ELP 32/6 core, I 32/3 core		
B66289	474, 475	ELP 38/8 core, I 38/4 core		
B66291	478, 479	ELP 43/10 core, I 43/4 core		
B66293	482, 483	ELP 58/11 core, I 58/4 core		
B66295	484, 485	ELP 64/10 core, I 64/5 core		
B66297	486, 487	ELP 102/20 core, I 102/7 core		
B66300	405	E 6.3 core		
B66301	406	E 6.3 coil former (SMD), cover cap		
B66302	407, 408	E 8.8 core, coil former (SMD), cover cap		
B66303	404	E 5 core		
B66305	410	E 13/7 core		
B66306	413	E 13/7 coil former (SMD)		
B66307	417	E 16/8 core		
B66308	419, 420	E 16/8 coil former, yoke		

Part number	Page	Туре		
B66311	422	E 20/10 core		
B66314	427	E 21/9 core		
B66315	432	E 25.4/10 core		
B66317	428	E 25/13 core		
B66319	433	E 30/15 core		
B66322	409	E 10/5.5 core		
B66325	443	E 42/21 core		
B66329	444	E 42/21 core		
B66335	448	E 55/28 core		
B66344	449	E 55/28 core		
B66347	512	ER 42/22 core		
B66348	513	ER 42/22 coil former		
B66350	511	ER 35/20 core		
B66357	516	ER 54/18 core		
B66358	518	ETD 29/16 core		
B66359	519, 520	ETD 29/16 coil former, yoke		
B66361	521	ETD 34/17 core		
B66362	523, 524	ETD 34/17 coil former, yoke		
B66363	525	ETD 39/20 core		
B66364	526	ETD 39/20 coil former, yoke		
B66365	527	ETD 44/22 core		
B66366	529	ETD 44/22 coil former, yoke		
B66367	530	ETD 49/25 core		
B66368	532	ETD 49/25 coil former, yoke		
B66370	439	E 34/14 core		
B66371	453	E 70/33 core		
B66372	454	E 70/33/32 coil former		
B66375	455	E 80/38 core		
B66377	514	ER 46/17 core		
B66379	421	E 19/8 core		
B66381	442	E 40/16 core		
B66383	447	E 47/20 core		
B66385	450	E 56/24 core		
B66387	451	E 65/32 core		
B66388	452	E 65/32/27 coil former		
B66389	440	E 36/18 core		
B66390	441	E 36/18 coil former		
B66391	515	ER 49/27 core		

Part number	Page	Туре		
B66393	416	E 16/6 core		
B66395	533	ETD 54/28 core		
B66396	535	ETD 54/28 coil former, yoke		
B66397	536	ETD 54/28 coli former, yoke ETD 59/31 core		
B66398	538	ETD 59/31 coile ETD 59/31 coil former, yoke		
B66408	551	EV 25/13 core		
B66411	540	EFD 10/5 core		
B66413	541	EFD 15/8 core		
B66414	414, 542, 543			
B66417	544	EFD 20/10 core		
B66418	545	EFD 20/10 coil former, yoke		
B66421	546	EFD 25/13 core		
B66422	547	EFD 25/13 coil former, yoke		
B66423	548	EFD 30/15 core		
B66424	549	EFD 30/15 coil former, yoke		
B66432	552	EV 30/16 core		
B66433	510	ER 28/17 core		
B66434	550	EV 15/9 core		
B66453	462, 463	ELP 18/4 core, I 18/2 core		
B66455	467, 468	ELP 22/6 core, I 22/2.5 core		
B66457	472, 473	ELP 32/6 core, I 32/3 core		
B66459	476, 477	ELP 38/8 core, I 38/4 core		
B66461	480, 481	ELP 43/10 core, I 43/4 core		
B66479	489, 490	EQ 13/3 core, I 13/1 core		
B66480	503	ER 18/3 core		
B66481	493, 494	EQ 25/6 core, I 25/2 core		
B66482	504, 505	ER 23/5 core, I 23/2 core		
B66483	491, 492	EQ 20/6 core, I 20/2 core		
B66484	506, 507	ER 25/6 core, I 25/3 core		
B66501	508	ER 32/5 core		
B66506	495, 496	EQ 30/8 core, I 30/3 core		
B67345	554	U 93/76, UI 93/104 cores		
	555	U 93/76, UI 93/104 cores		
	556	U 93/76, UI 93/104 cores		
B67370	557	U 101/76 core		
B67374	559	U 141/78 core		
B67385	558	U 126/91, UI 126/119 cores		
B68450	607	FPC film		
B68451	607	FPC film		

SIFERRIT materials

Based on IEC 60401-3, the data specified here are typical data for the material in question, which have been determined principally on the basis of toroids (ring cores).

The purpose of such characteristic material data is to provide the user with improved means for comparing different materials.

There is no direct relationship between characteristic material data and the data measured using other core shapes and/or core sizes made of the same material. In the absence of further agreements with the manufacturer, only those specifications given for the core shape and/or core size in question are binding.

SIFERRIT materials

1 Material application survey

Usage	Frequency range	Material	Specific application	Core type
High Q inductors	up to 0.1 MHz	N48	Filters in telephony,	Gapped RM, P,
in resonant circuits	0.2 – 1.6 MHz	M33	MW IF filters	adjusting cores
and filters	1.5 – 12 MHz	K1		
Current transformers	up to 3 MHz	T36	Energy meters	Toroids
Broadband	up to 3 MHz	T46	Impedance and matching	Toroids
transformers		T38	transformers (ISDN, xDSL	EP, RM, toroids
(e.g. antenna		T66	using paired core shapes	
transformers,		N45	with air gap)	
ISDN transformers, digital data transformers	up to 10 MHz	M33	Radio-frequency transformers	Double aper- ture, toroids
(xDSL, LAN)	up to 100 MHz	T57	LAN (also suitable for xDSL in paired core shapes)	Toroids
		M33	Balun transformers	Double aper-
		K1		ture, toroids
Electromagnetic	up to 3 MHz	T38	Current-compensated	E, toroids
Interference (EMI)		T37	chokes	
		T36		
		T35		
		T65		
	up to 5 MHz	N30		E, toroids
	up to 100 MHz	M13	Line attenuation,	Toroids
		K8	current-compensated	
		K10	chokes	
Sensors, ID systems	up to 1 MHz	N22	Inductive proximity switches	P core halves
	up to 2 MHz	M33		
Medium and high	up to 100 kHz	N27	Power transformers	E, ETD, ER, EQ,
frequency switch-	up to 500 kHz	N87	and chokes	EFD, EV, ELP,
mode power supplies		N88		RM, RM LP,
		N95		PM, PQ, U
		N96		
		N97		
		PC47		
	300 kHz to 1 MHz	N49		
	up to 100 kHz	N41	Chokes	E, ETD, ER, EQ, EFD, EV, ELP, RM, RM LP, PM
		N51		
	up to 500 kHz	N92	High voltage transformers and power chokes	
	up to 200 kHz	N72	Electronic lamp ballast devices	E, ETD

SIFERRIT materials

2 Material properties

Preferred application			Resonant circuit inductors			Inductors for line attenuation
Material			K1	M33 ¹⁾	N48	K10
Base material			NiZn	MnZn	MnZn	NiZn
Color code (adjuster)			violet	white	_	_
	Symbol	Unit				
Initial permeability (T = 25 °C)	μί		80 ±25%	750 ±25%	2300 ±25%	800 ±25%
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	5000 310 280	2000 400 310	1200 420 310	5000 320 240
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	380 350	80 65	26 19	40 25
Optimum frequency range	f _{min} f _{max}	MHz	1.5 12	0.2 1.0	0.01 0.1	0.1 1.0
$ \begin{array}{ll} \text{Relative} & \text{at } f_{\text{min}} \\ \text{loss factor} & \text{at } f_{\text{max}} \end{array} $	tan δ/μ _i	10 ⁻⁶	<40 <120	<12 <20	<4 <6	<15 <60
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<36	<1.8	<0.4	<5
Curie temperature	T _C	°C	>400	>200	>170	>150
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ⁻⁶ /K	2 8 7 1	0.5 2.6	0.3 1.3 0.3 1.3	_
Mean value of α_F at 25 55 °C		10 ^{−6} /K	4	1.6	0.70	10.0
Density (typical values)		kg/m ³	4800	4700	4700	5000
Disaccommodation factor at 25 °C	DF	10-6	20	8	2	_
Resistivity	ρ	Ωm	10 ⁵	5	3	10 ⁵
Core shapes			RM, P, Toroid, P core half	RM, P, Toroid, Double- aperture, P corehalf	RM, P	Toroid, Double- aperture
Other material propertie	52	57	70	55		

¹⁾ For threaded cores μ_i = 600 \pm 20%

Preferred application		Inductors for lin	e attenuation	Proximity switches	
Material			K8	M13	N22
Base material			NiZn	NiZn	MnZn
Color code (adjuster)			_	_	red
	Symbol	Unit			
Initial permeability (T = 25 °C)	μί		860 ±25%	2300 ±25%	2300 ±25%
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 340 240	1200 280 135	1200 370 260
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	40 25	12 8	18 14
Optimum frequency range	f _{min} f _{max}	MHz	0.1 0.5	0.001 0.1	0.001 0.2
Relative at f _{min} loss factor at f _{max}	tan δ/μ _i	10 ⁻⁶	<20 <30	<5 <20	<2 <20
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<4.5	<4.0	<1.4
Curie temperature	T _C	°C	>150	>105	>145
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ⁻⁶ /K			
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	9.2	3.7	0.9
Density (typical values)		kg/m ³	5100	5200	4700
Disaccommodation factor at 25 °C	DF	10-6	_	_	4
Resistivity	ρ	Ωm	10 ⁵	10 ⁵	1
Core shapes	Core shapes		Toroid	Toroid, Double- aperture	P core half
Other material propertie	s (graphs) see	e page	54	56	59

Preferred application			Broadband transformers			
Material			N45	T57	N30	T65
Base material			MnZn	MnZn	MnZn	MnZn
	Symbol	Unit				
Initial permeability (T = 25 °C)	μί		3800 ±25%	4000 ±25%	4300 ±25%	5200 ±30%
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	550 435	1200 430 270	1200 380 240	1200 460 320
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	15 21	14 12	12 8	12 11
Optimum frequency range	f _{min} f _{max}	MHz	0.01 0.10	0.01 0.5	0.01 0.40	0.01 0.20
Relative at f _{min} loss factor at f _{max}	tan δ/μ _i	10 ⁻⁶	<1.0 <2.0	<5 <70	<2 <60	<1.5 <25
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<0.3	<0.3	<1.1	<1.1
Curie temperature	T _C	°C	>255	>140	>130	>160
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ⁻⁶ /K	-85.0 1.5 3.0	_	_	_
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	_	0.5	0.6	- 0.5
Density (typical values)		kg/m ³	4900	4900	4900	4900
Disaccommodation factor at 25 °C	DF	10-6	_	_	_	_
Resistivity	ρ	Ωm	11	3	0.5	0.30
Core shapes			ER, EP, RM	RM, P, EP, Toroid	RM, P, EP, E, Toroid, Double- aperture	RM, P, Toroid, EP
Other material propertie	s (graphs) see	e page	68	113	63	115
		_				

Preferred application			Broadband transformers			
Material	Material			T37	T36	
Base material			MnZn	MnZn	MnZn	
	Symbol	Unit				
Initial permeability (T = 25 °C)	μί		6000 ±25%	6500 ±25%	7000 ±25%	
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 390 270	1200 380 240	1200 400 240	
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	12 9	9	22 24	
Optimum frequency range	f _{min} f _{max}	MHz	0.01 0.20	0.01 0.30	0.05 kHz 100 kHz	
Relative at f _{min} loss factor at f _{max}	tan δ/μ _i	10 ⁻⁶	<4 <60	<2 <60	<3 <30	
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<1.1	<1.1	<1.1	
Curie temperature	T _C	°C	>130	>130	>130	
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ⁻⁶ /K		_	_	
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	0.8	-0.3	0.5	
Density (typical values)		kg/m ³	4900	4900	4950	
Disaccommodation factor at 25 °C	DF	10-6	_	_	_	
Resistivity	ρ	Ωm	0.2	0.2	0.2	
Core shapes			RM, P, EP, Toroid	Toroid	Toroid	
Other material propertie	s (graphs) see	e page	103	107	105	

Preferred application		Broadband transformers			
Material			T38	T66	T46 ¹⁾
Base material			MnZn	MnZn	MnZn
	Symbol	Unit			
Initial permeability (T = 25 °C)	μί		10000 ±30%	13000 ±30%	15000 ±30%
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 430 260	1200 360 —	1200 400 240
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	8 7	8 7	7 6
Optimum frequency range	f _{min} f _{max}	MHz	0.01 0.10	0.01 0.10	0.01 0.10
Relative at f _{min} loss factor at f _{max}	tan δ/μ _i	10 ⁻⁶ 10 ⁻⁶	<2.0 <20	<1 <30	<8 <100
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<0.3	<0.3	<2.0
Curie temperature	T _C	°C	>130	>100	>130
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ⁻⁶ /K		0.78 0.40	
Mean value of α_{F} at 25 55 °C		10 ^{−6} /K	- 0.2	_	- 0.6
Density (typical values)		kg/m ³	4900	4950	4950
Disaccommodation factor at 25 °C	DF	10-6	_	_	_
Resistivity	ρ	Ωm	0.1	0.8	0.01
Core shapes			RM, P, EP, ER, Toroid, E	EP, Toroid, RM	Toroid, E
Other material propertie	s (graphs) see	page	109	117	111

¹⁾ Material values defined on the basis of small toroids (≤R10)

Preferred application			Power transformers			
Material	Material			N92	N27	
Base material			MnZn	MnZn	MnZn	
	Symbol	Unit				
Initial permeability (T = 25 °C)	μί		1500 ±25%	1500 ±25%	2000 ±25%	
Flux density (H = 1200 A/m, f = 10 kHz)	B _S (25 °C) B _S (100 °C)	mT mT	490 400	500 440	500 410	
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	38 33	24 13	23 19	
Optimum frequency range		kHz	300 1000	25 500	25 150	
Hysteresis material constant	ηВ	10 ⁻⁶ /mT	<0.4	<1.4	<1.5	
Curie temperature	T _C	°C	>240	>280	>220	
Mean value of α_{F} at 25 55 °C		10 ⁻⁶ /K	_	_	3	
Density (typical values)		kg/m ³	4750	4850	4800	
Relative core losses (typical values)	P _V					
25 kHz, 200 mT, 100 °C		kW/m ³	_	70	155	
100 kHz, 200 mT, 100 °C		kW/m ³	_	410	920	
300 kHz, 100 mT, 100 °C $$		kW/m ³	330	410	_	
500 kHz, 50 mT, 100 °C		kW/m ³	80	230	_	
1 MHz, 50 mT, 100 °C		kW/m ³	475	_	_	
Resistivity	ρ	Ωm	17	8	3	
Core shapes			RM, EFD, ELP, Toroid, EQ, ER	RM, ETD, EFD, ER, E, ELP, Toroid, EQ, ER	P, PM, ETD, ER, E, U, Toroid	
Other material properties (graphs) see p	age	72	88	60	

Preferred application			Power transformers			
Material	Material			N97	N72	
Base material			MnZn	MnZn	MnZn	
	Symbol	Unit				
Initial permeability (T = 25 °C)	μί		2200 ±25%	2300 ±25%	2500 ±25%	
Flux density (H = 1200 A/m, f = 10 kHz)	B _S (25 °C) B _S (100 °C)	mT mT	490 390	510 410	480 370	
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m	21 13	21 12	15 11	
Optimum frequency range		kHz	25 500	25 500	25 300	
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<1.0	<1.0	<1.4	
Curie temperature	T _C	°C	>210	>230	>210	
Mean value of α_F at 25 55 °C		10 ⁻⁶ /K	4	4	3	
Density (typical values)		kg/m ³	4850	4850	4750	
Relative core losses (typical values)	P _V					
25 kHz, 200 mT, 100 °C		kW/m ³	57	45	80	
100 kHz, 200 mT, 100 °C		kW/m ³	375	300	540	
300 kHz, 100 mT, 100 °C		kW/m ³	390	340	500	
500 kHz, 50 mT, 100 °C		kW/m ³	215	205	_	
Resistivity	ρ	Ωm	10	8	12	
Core shapes			RM, P, PM, ETD, EFD, E, ER, EP, EQ, ELP, U, Toroid	RM, PM, ETD, EFD, ER, EQ, E, ELP, Toroid	E, EFD	
Other material properties (g	graphs) see p	age	81	97	78	

Material N881 N961 PC472	Preferred application		Power transformers			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Material	Material			N96 ¹⁾	PC47 ²⁾
$\begin{array}{ c c c c c } \hline \text{Initial permeability} & \mu_i & 1900 & 2900 & 2500 \\ \hline (T = 25 ^\circ\text{C}) & \mu_i & 1900 & 225\% & \pm 25\% & \pm 25\% \\ \hline \hline \text{Flux density} & B_S (25 ^\circ\text{C}) & mT & 500 & 500 & 530 \\ \hline \text{H} = 1200 \text{A/m}, f = 10 \text{kHz}) & B_S (100 ^\circ\text{C}) & mT & 400 & 410 & 420 \\ \hline B_S (140 ^\circ\text{C}) & mT & 340 & 16 & 16 & 13 \\ \hline \text{Coercive field strength} & H_c (25 ^\circ\text{C}) & A/m & 10 & 15 & 6 \\ \hline \text{Coptimum frequency range} & \text{kHz} & 25 \dots & 25 \dots & 10 \dots \\ \hline \text{Dptimum frequency range} & \text{kHz} & 25 \dots & 25 \dots & 10 \dots \\ \hline \text{Soo} & 500 & 500 & 500 \\ \hline \text{Hysteresis} & \eta_B & 10^{-6} \text{mT} & <1.5 & <0.5 & <1 \\ \hline \text{material constant} & 10 & 10^{-6} & <30 & <20 & <20 \\ \hline \text{Curie temperature} & T_C & ^\circ\text{C} & >220 & >240 & >230 \\ \hline \text{Mean value of } \alpha_F & 10^{-6} \text{K} & 4 & 1 & 4 \\ \hline \text{4} & 12 & 4 & 1 & 4 \\ \hline \text{Density (typical values)} & \text{kg/m}^3 & 4900 & 4850 & 4900 \\ \hline \text{Relative core losses} & \text{ky/m}^3 & 380 & 390 & 270 \\ \hline \text{100 kHz, 200 mT, 100 } ^\circ\text{C} & \text{kW/m}^3 & 340 & - & - \\ \hline \text{300 kHz, 200 mT, 100 } ^\circ\text{C} & \text{kW/m}^3 & 340 & - & - \\ \hline \text{300 kHz, 100 mT, 100 } ^\circ\text{C} & \text{kW/m}^3 & - & 360 \\ \hline \text{Resistivity} & \rho & \Omega m & 10 & 10 & 4 \\ \hline \text{Core shapes} & \text{E, ER, ETD, U} & \text{E, EQ, PQ,} & \text{ETD} \\ \hline \end{array}$	Base material			MnZn	MnZn	MnZn
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Symbol	Unit	NEW	NEW	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μί				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	B _S (100 °C)	mT	400		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	H _c (100 °C)	A/m	10		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Optimum frequency range		kHz			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	ηΒ	10 ⁻⁶ /mT	<1.5	<0.5	<1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		tan δ/μ _i	. •	'	-	
at 25 55 °C kg/m³ 4900 4850 4900 Relative core losses (typical values) P _V (typical values) kW/m³ 720 325 600 100 kHz, 200 mT, 25 °C kW/m³ — 330 — 100 kHz, 200 mT, 100 °C kW/m³ 380 390 270 100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U ETD ETD ETD ETD	Curie temperature	T _C	°C	>220	>240	>230
Relative core losses (typical values) P _V kW/m³ 720 325 600 100 kHz, 200 mT, 25 °C kW/m³ 720 325 600 100 kHz, 200 mT, 60 °C kW/m³ — 330 — 100 kHz, 200 mT, 100 °C kW/m³ 380 390 270 100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U E, EQ, PQ, ETD E, EQ, PQ, ETD			10 ⁻⁶ /K	4	1	4
(typical values) kW/m³ 720 325 600 100 kHz, 200 mT, 60 °C kW/m³ — 330 — 100 kHz, 200 mT, 100 °C kW/m³ 380 390 270 100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U ETD E, EQ, PQ, ETD E, EQ, PQ, ETD	Density (typical values)		kg/m ³	4900	4850	4900
100 kHz, 200 mT, 60 °C kW/m³ — 330 — 100 kHz, 200 mT, 100 °C kW/m³ 380 390 270 100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U E, EQ, PQ, ETD E, EQ, PQ, ETD		P _V				
100 kHz, 200 mT, 100 °C kW/m³ 380 390 270 100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U E, EQ, PQ, ETD E, EQ, PQ, ETD ETD	100 kHz, 200 mT, 25 °C		kW/m ³	720	325	600
100 kHz, 200 mT, 140 °C kW/m³ 340 — — 300 kHz, 100 mT, 100 °C kW/m³ — — 360 Resistivity ρ Ωm 10 10 4 Core shapes E, ER, ETD, U E, EQ, PQ, ETD E, EQ, PQ, ETD E, EQ, PQ, ETD	100 kHz, 200 mT, 60 °C		kW/m ³	_	330	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 kHz, 200 mT, 100 °C		kW/m ³	380	390	270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 kHz, 200 mT, 140 °C		kW/m ³	340	_	_
Core shapes E, ER, ETD, U E, EQ, PQ, ETD ETD	300 kHz, 100 mT, 100 °C		kW/m ³	_	_	360
ETD ETD	Resistivity	ρ	Ωm	10	10	4
Other material properties (graphs) see page 84 94 100	Core shapes			E, ER, ETD, U		
	Other material properties (g	graphs) see p	age	84	94	100

¹⁾ Preliminary data

²⁾ For cores up to 100 g

Preferred application	Power transformers				
Material			N41	N51	N95
Base material			MnZn	MnZn	MnZn
	Symbol	Unit			
Initial permeability (T = 25 °C)	μί		2800 ±25%	3000 ±25%	3000 ±25%
Flux density (H = 1200 A/m, f = 10 kHz)	B _S (25 °C) B _S (100 °C)	mT mT	490 390	480 380	525 410
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m	22 20	5 5	18 19
Optimum frequency range		kHz	25 150	25 150	25 500
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<1.4	<0.4	<0.6
Curie temperature	T _C	°C	>220	>220	>220
Mean value of α_F at 25 55 °C		10 ⁻⁶ /K	4	2	2
Density (typical values)		kg/m ³	4750	4800	4900
Relative core losses (typical values)	P _V				
25 kHz, 200 mT, 25 °C		kW/m ³	_	75	_
100 kHz, 200 mT, 25 $^{\circ}$ C		kW/m ³	_	450	425
300 kHz, 100 mT, 25 °C		kW/m ³	_	400	455
500 kHz, 50 mT, 25 °C		kW/m ³	_	_	250
25 kHz, 200 mT, 100 °C		kW/m ³	180	110	_
100 kHz, 200 mT, 100 °C		kW/m ³	1400	700	350
300 kHz, 100 mT, 100 °C		kW/m ³	_	630	410
500 kHz, 50 mT, 100 °C		kW/m ³	_		250
Resistivity	ρ	Ωm	2	6	6
Core shapes			RM, P	E, ER, ETD	E, ER, ETD
Other material properties (g	graphs) see p	age	65	75	91

Preferred application			Film	
Material	Ferrite polymer composite (FPC)			
Base material			C350	C351
	Symbol	Unit		
Initial permeability f = 1 MHz	μ_{i}		9±20%	9±20%
Flux density (near saturation) H = 25 kA/m f = 10 kHz	B _S (25 °C)	mT	255	255
Remanent induction H = 25 kA/m f = 10 kHz	B _r (25 °C)	mT	9	9
Coercive field strength H = 25 kA/m f = 10 kHz	H _C (25 °C)	A/m	600	600
Relative loss factor $f = 1 \text{ MHz}$ $f = 100 \text{ MHz}$ $f = 1 \text{ GHz}$	tan δ/μ _i		<0.005 <0.400	<0.005 <0.400
Hysteresis material constant	η_{B}	10−3/mT	<2	<2
Temperature coefficient	α=Δμ/μΔΤ	1/K	<5·10 ⁻⁵	<5·10 ⁻⁵
Density		kg/m ³	2930	2930
Resistivity f = 1 kHz f = 10 kHz f = 10 MHz	ρ	Ωm	500	500
Relative permittivity f = 1 kHz f = 10 kHz f = 10 MHz	ε _r		700	700
Maximum operating temperature	T _{max}	°C	120	200
Dielectric strength		kV/mm	1	0.8
Tensile strength ¹⁾	σ_{Z}	N/mm ²	1.5	2.5
Tearing resistance ¹⁾		%	25	25
Compressibility ¹⁾	κ	N/mm ²	70	70
Other material properties (graphs) see page		_	_

¹⁾ T = 23 °C and 50% relative humidity

3 Measuring conditions

The following measuring conditions, which correspond largely to IEC 60401-3, apply for the material properties given in the table:

Properties (valid only			Measuring co	nditions			
for ring cores of sizes R 10 to R 36)			Frequency	Field strength (material- dependent)	Max. densit		Temper- ature
	Symbol	Unit	kHz	kA/m	mT		°C
Initial permeability	μί		≤10		≤0.25		25
Flux density near to saturation	В	mT	≤10	≥1.2			25; 100
Coercive field strength	H _c	A/m kA/m	≤10	≥1.2	near satura	ation	25; 100
Relative loss factor	tan δ/μ _i		_		≤ 0.25	5	25
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	10 ($\mu_i \ge 500$) 100 ($\mu_i < 500$)		B ₁ 1.5 0.3	B ₂ 3.0 1.2	25
Curie temperature	T _c	°C	≤10		≤0.25		
Relative temperature coefficient	α _F	10 ⁻⁶ /K	≤10		≤0.25		5 25 25 55
Density		kg/m ³					25
Disaccommodation factor	DF	10-6	≤10		≤0.25		25; 60 ¹⁾
Resistivity	ρ	Ωm	DC				25

The following properties are given only for materials for power applications:

Power loss	P_V	kW/m ³	25	200	100
	-		100	200	
			300	100	
			500	50	
			1000	50	

¹⁾ Higher temperature than specified by IEC (40 °C)

4 Specific material data

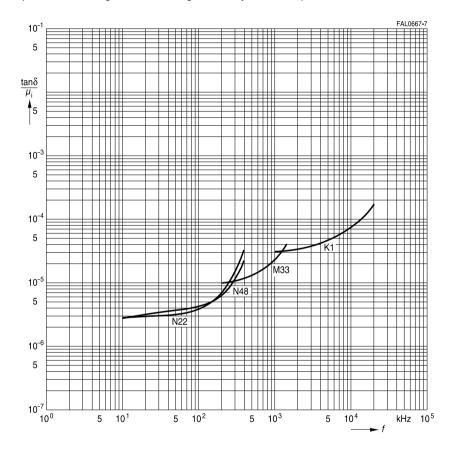
DC magnetic bias

$$H_{DC} \, = \, \frac{I_{DC} \cdot N}{I_{e}}$$

H_{DC} DC field strength (A/m)

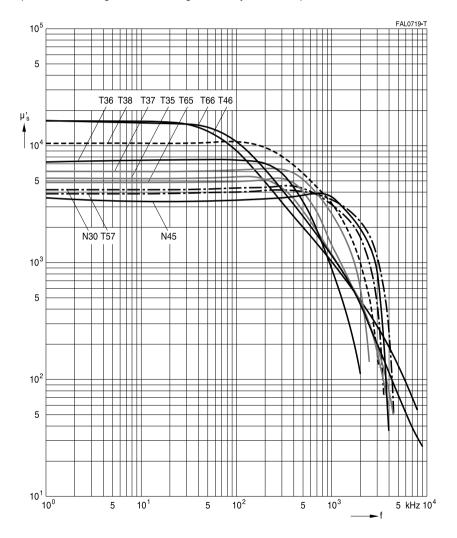
I_{DC} Direct current (A)

N Number of turns

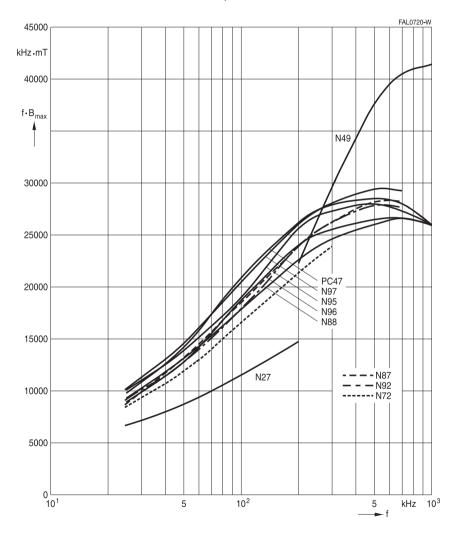

l_e Effective magnetic path length (m)

The curves of $\mu_{rev} = f(H_{DC})$ allow an approximate calculation of the variation in reversible permeability (μ_{rev}) and A_L value caused by magnetic bias. These curves are of particular interest for cores for transformers and chokes, since magnetic bias should be avoided if possible with inductors requiring high stability (filter inductors etc.). In the case of geometrically similar cores (i.e. in particular the same A_{min}/A_e ratio) the effective permeability of the core in question in conjunction with the given curves suffices to determine the reversible permeability to a close approximation.

Inductors for resonant circuits and proximity switches

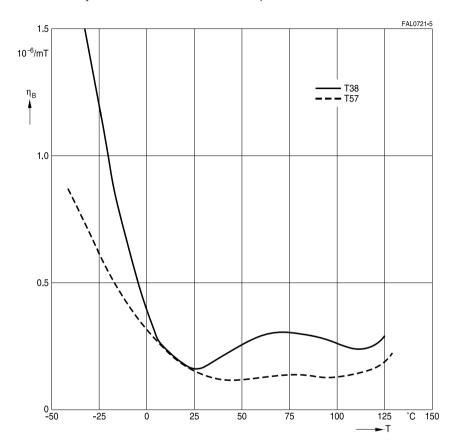

Relative loss factor versus frequency (measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

Broadband transformers


Relative inductance component versus frequency (measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

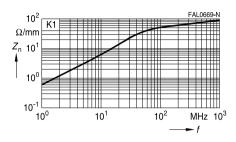
Power transformers

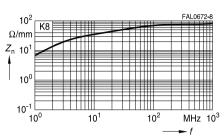
Performance factor versus frequency (measured with ring cores R29, T = 100 $^{\circ}$ C, P_V = 300 kW/m³)



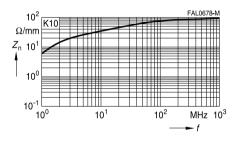
For definition of performance factor see page 132.

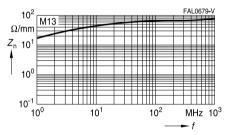
Broadband and filter applications


Standardized hysteresis material constant versus temperature



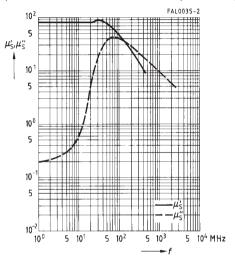
Normalized impedance


K1

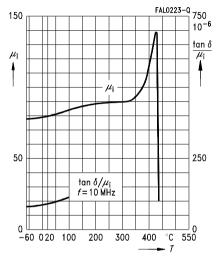

K8

K10

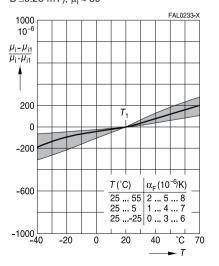
M13



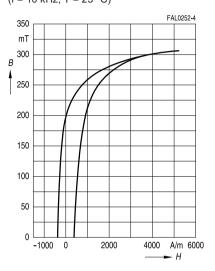
For explanation of Z_n see page 150.

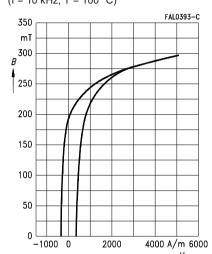


K1


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

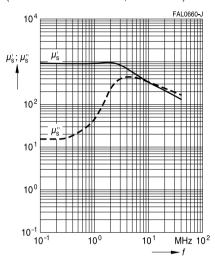
Initial permeability μ_i and relative loss factor $\tan \delta/\mu_i$ versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

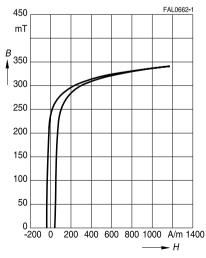

Permeability factor versus temperature (measured on P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 80$



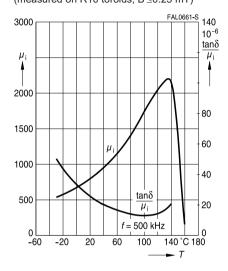
K1

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

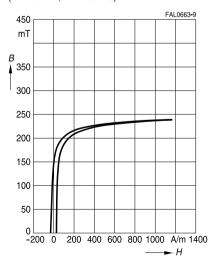

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


K8

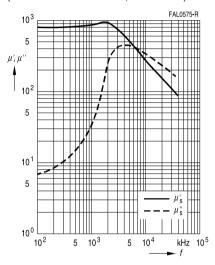
Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

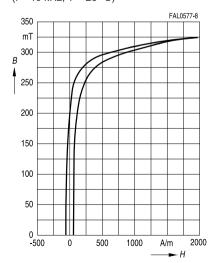


Dynamic magnetization curves (typical values)

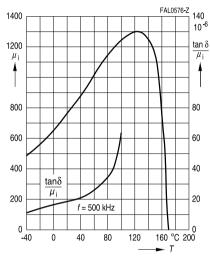

$$(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$$

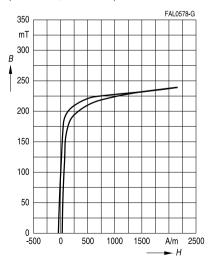
Initial permeability μ_i and relative loss factor $\tan \delta/\mu_i$ versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)


Dynamic magnetization curves (typical values)



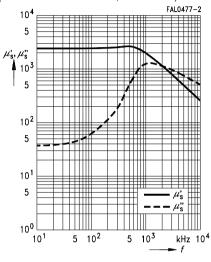
K10


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25 \text{ mT}$)

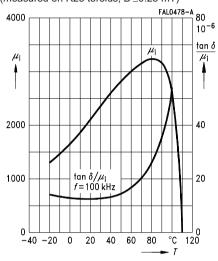

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured on R10 toroids, B ≤0.25 mT)

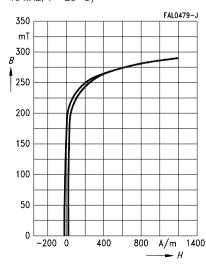
Dynamic magnetization curves (typical values)



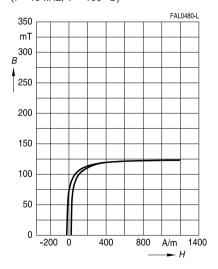
M13


Complex permeability versus frequency

(measured on R10 toroids, $\hat{B} \le 0.25 \text{ mT}$)

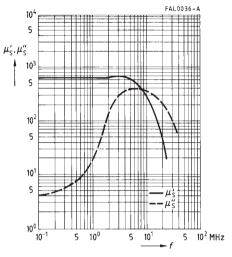

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature

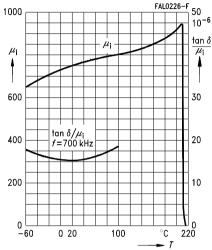
(measured on R25 toroids, B ≤0.25 mT)



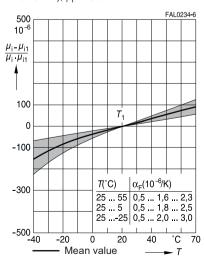
Dynamic magnetization curves (typical values)

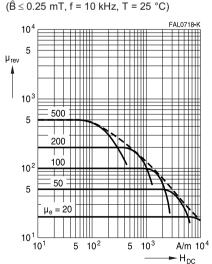
$$(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$$


Dynamic magnetization curves (typical values)

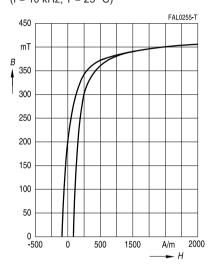


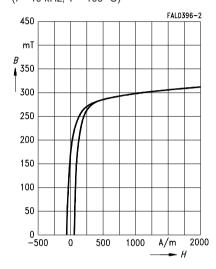
M33


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25 \text{ mT}$)


Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

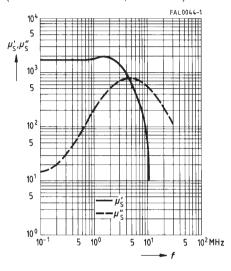
Permeability factor versus temperature (measured on P and RM cores, $\hat{B} \le 0.25 \text{ mT}$), $\mu_i \approx 750$

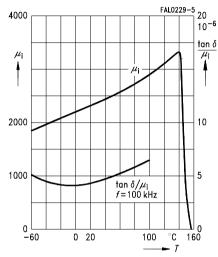

DC magnetic bias of P and RM cores (typical values)



M33

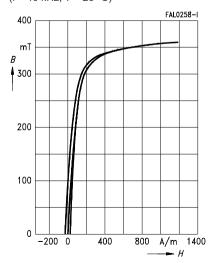
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

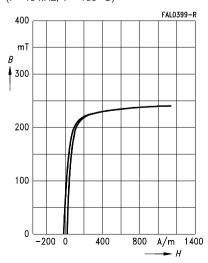


N22

Complex permeability versus frequency (measured on R10 toroids, B ≤0.25 mT)

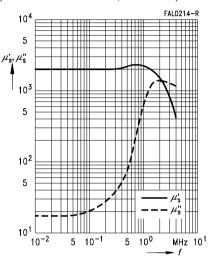


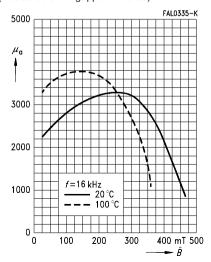
Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured on R10 toroids, B ≤0.25 mT)



Dynamic magnetization curves (typical values)

$$(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$$

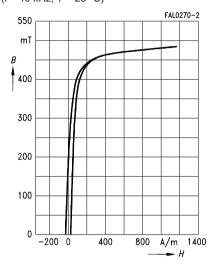

Dynamic magnetization curves (typical values)

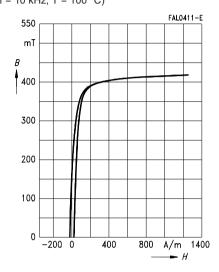


N27

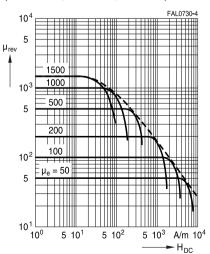
Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on ungapped E cores)


Initial permeability μ_i versus temperature (measured on R10 toroids, $\hat{B} \leq 0.25$ mT)

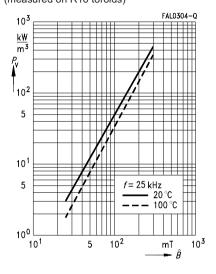


N27

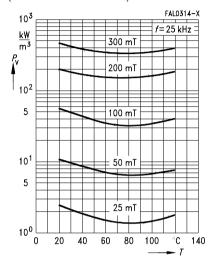

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

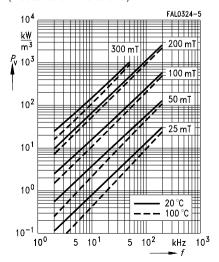
DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT, f} = 10 \text{ kHz, T} = 25 \text{ °C})$



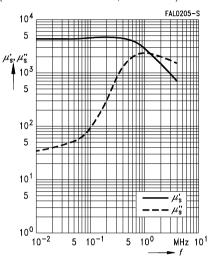
04/13

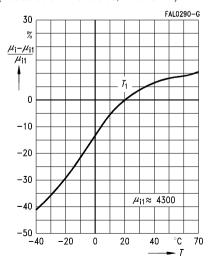


N27

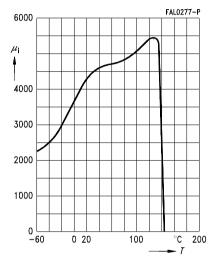

Relative core losses versus AC field flux density (measured on R16 toroids)

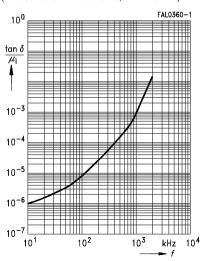
Relative core losses versus temperature (measured on R16 toroids)


Relative core losses versus frequency (measured on R16 toroids)

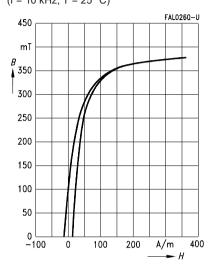


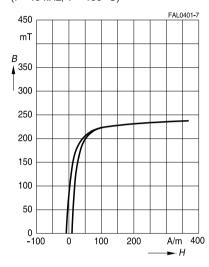
N30


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

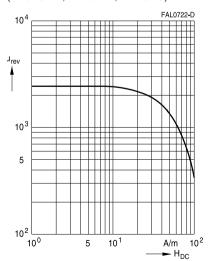

Variation of initial permeability with temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R10 toroids, $\hat{B} \leq$ 0.25 mT)


Relative loss factor versus frequency (measured on R20 toroids, $\hat{B} \le 0.25$ mT)

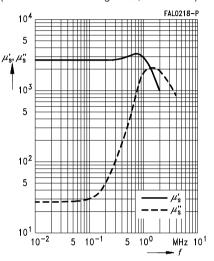


N30

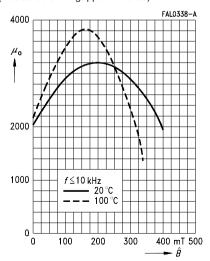

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

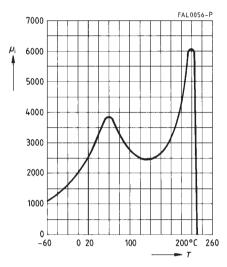
DC magnetic bias of RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$



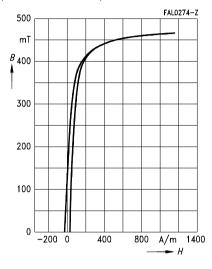
04/13

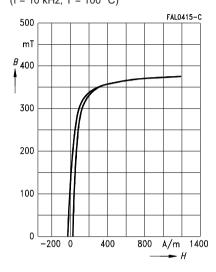


N41

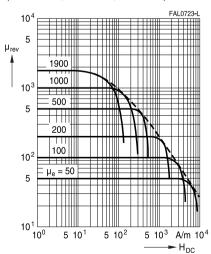

Complex permeability versus frequency (measured with R10 ring cores, \hat{B} ≤0.25 mT)

Amplitude permeability versus AC field flux density (measured on ungapped E cores)

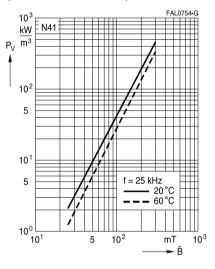

Initial permeability μ_i versus temperature (measured with R10 ring cores, B ≤0.25 mT)

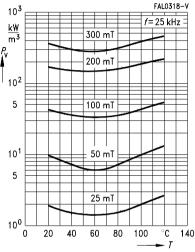


N41

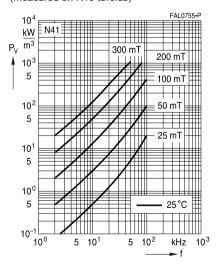

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias of P and RM cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

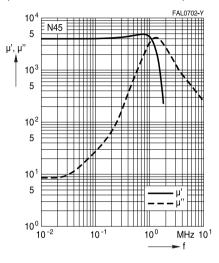

N41

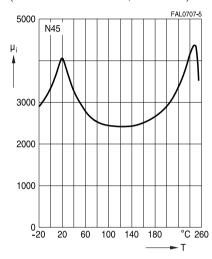
Relative core losses versus AC field flux density (measured on R16 toroids)



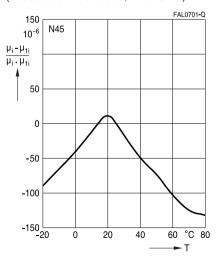
versus temperature (measured on R16 toroids)

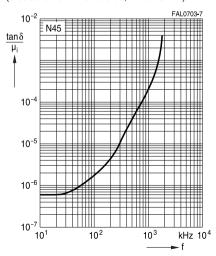
Relative core losses


Relative core losses versus frequency (measured on R16 toroids)

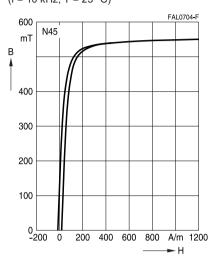


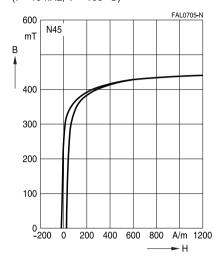
N45


Complex permeability versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

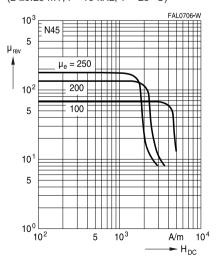

Initial permeability μ_i versus temperature (measured on R29 toroids, $\hat{B} \leq 0.25$ mT)

Variation of initial permeability with temperature (measured on R29 toroids, \hat{B} ≤0.25 mT)

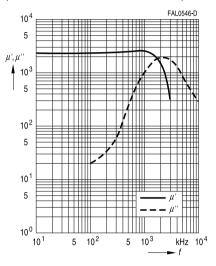

Relative loss factor versus frequency (measured on R29 toroids, \hat{B} ≤0.25 mT)

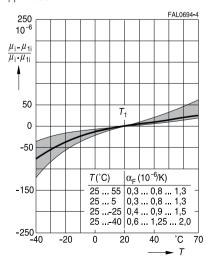


N45

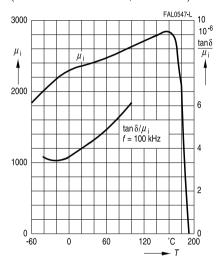

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

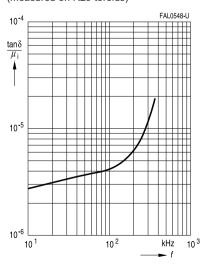
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias of P and RM cores (typical values) ($\hat{B} \le 0.25 \text{ mT}$, f = 10 kHz, T = 25 °C)

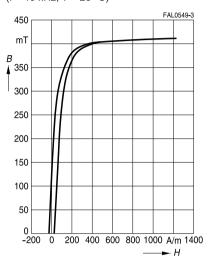


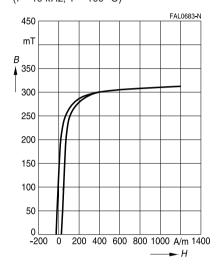
N48


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

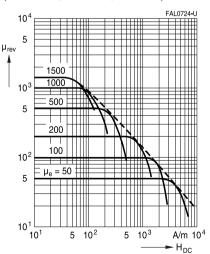

Permeability factor versus temperature (measured on P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 2300$

Initial permeability μ_i and relative loss factor $\tan \delta/\mu_i$ versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

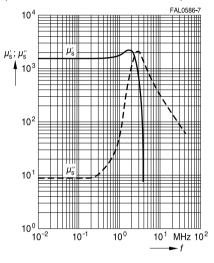

Relative loss factor tan δ/μ_i versus frequency (measured on R29 toroids)

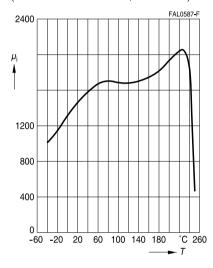


N48

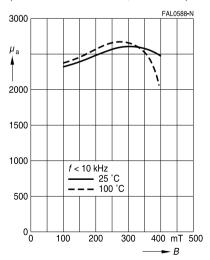

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias (measured on ETD cores, typical values) ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

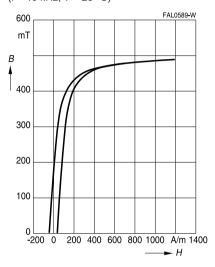


N49

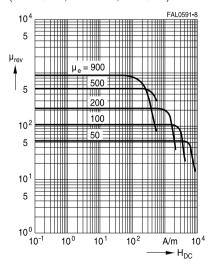

Complex permeability versus frequency (measured on R34 toroids, B ≤0.25 mT)

Initial permeability μ_i versus temperature (measured on R34 toroids, B ≤0.25 mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, B ≤0.25 mT)

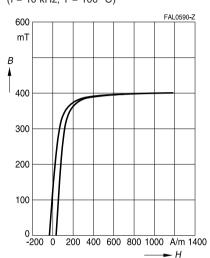


04/13

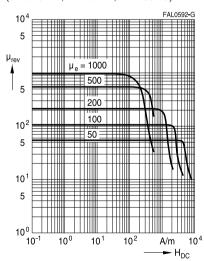


N49

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

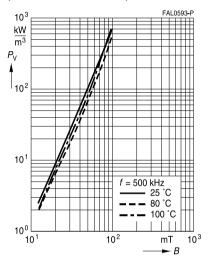


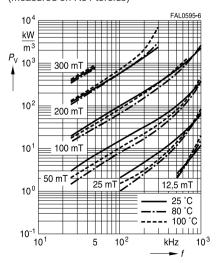
DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$



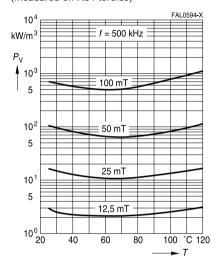
Please read Important notes on page 2 and Cautions and warnings on page 609.

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

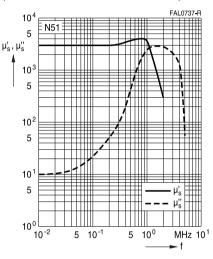

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

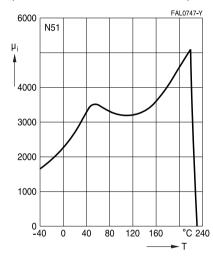


N49

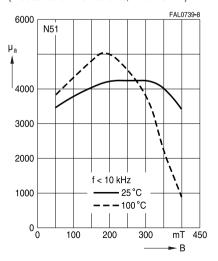

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

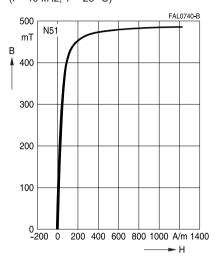

Relative core losses versus temperature (measured on R34 toroids)

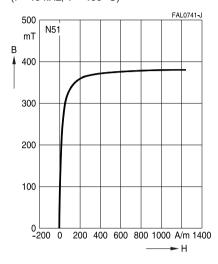


N51

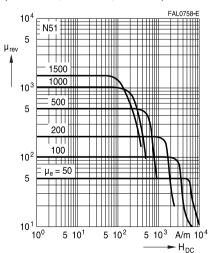

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)

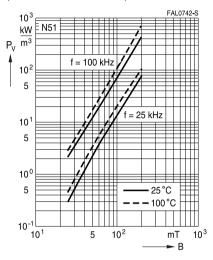

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

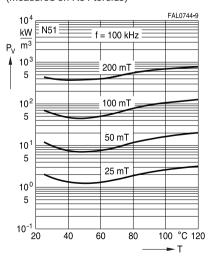


N51


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

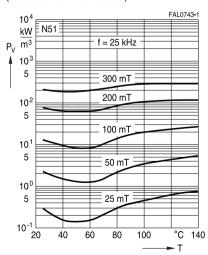
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias measured on E cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

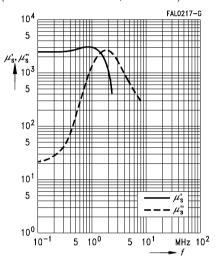


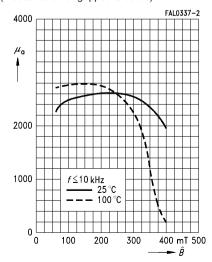
N51

Relative core losses versus AC field flux density (measured on R34 toroids)

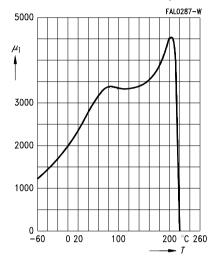

Relative core losses versus temperature (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

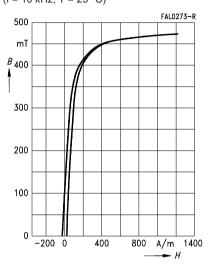

Relative core losses versus temperature (measured on R34 toroids)

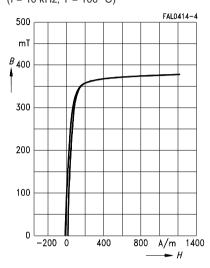


N72

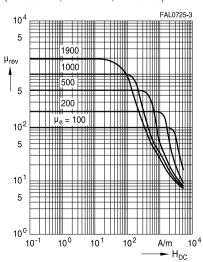

Complex permeability versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

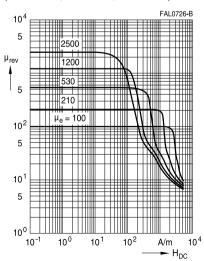
Amplitude permeability versus AC field flux density (measured on ungapped U cores)


Initial permeability μ_i versus temperature (measured on R29 toroids, $\hat{B} \leq 0.25$ mT)



N72


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

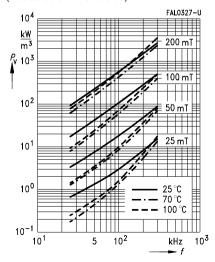

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias measured on E cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

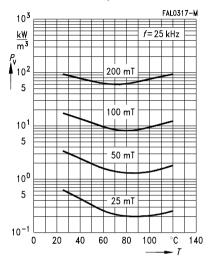
DC magnetic bias measured on E cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)



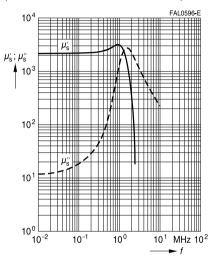
04/13

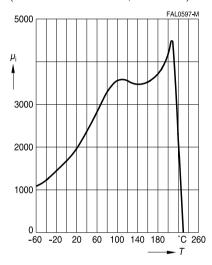


N72

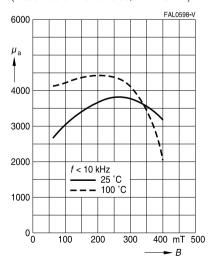

Relative core losses versus AC field flux density (measured on R29 toroids)

Relative core losses versus frequency (measured on R29 toroids)

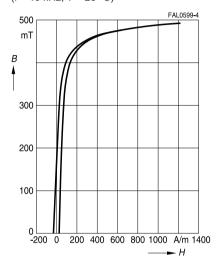

Relative core losses versus temperature (measured on R29 toroids)

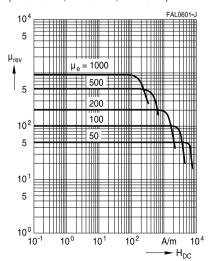


N87


Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

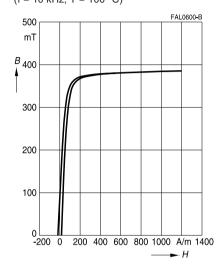
Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)


Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

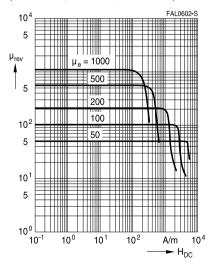


N87

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

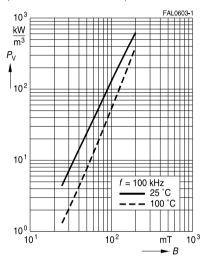


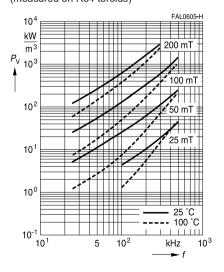
DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$



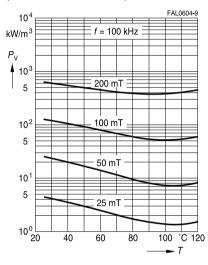
Please read Important notes on page 2 and Cautions and warnings on page 609.

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$


DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

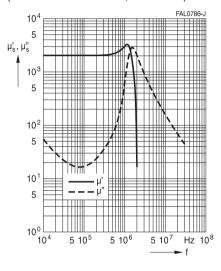


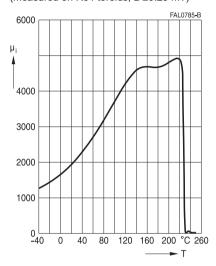
N87


Relative core losses versus AC field flux density (measured on R34 toroids)

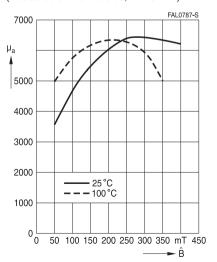
Relative core losses versus frequency (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)



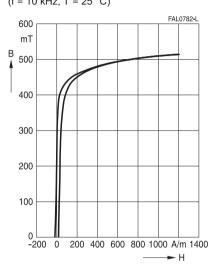

N88

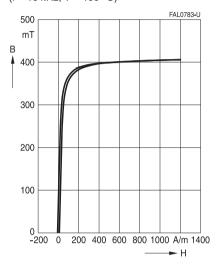
Preliminary data


Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

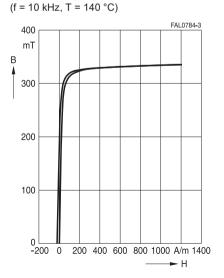
Initial permeability μ_i versus frequency (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, f < 10 kHz)



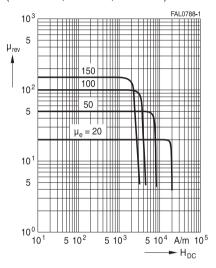

N88

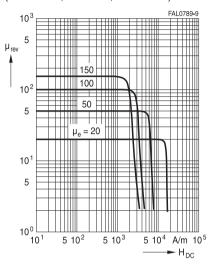
Preliminary data


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Dynamic magnetization curves (typical values)

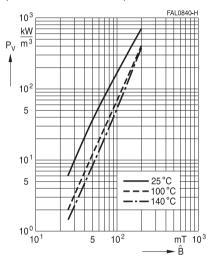


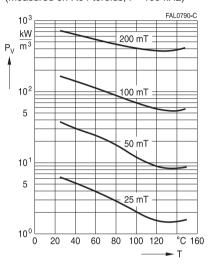

N88

Preliminary data

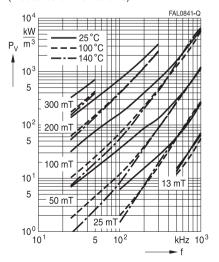
DC Magnetic bias measured on ETD29 cores ($\hat{B} \le 0.25 \text{ mT}$, f =10 kHz, T = 25 °C)

DC Magnetic bias measured on ETD29 cores ($\hat{B} \le 0.25$ mT, f =10 kHz, T = 100 °C)

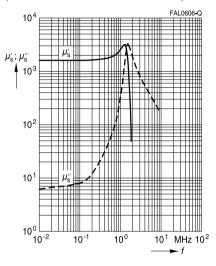


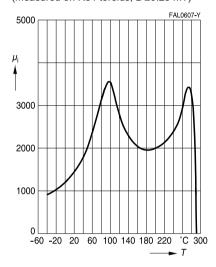

N88

Preliminary data

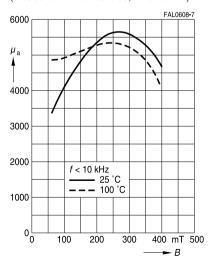

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids, f = 100 kHz)

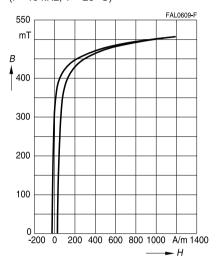

Relative core losses versus frequency (measured on R34 toroids)

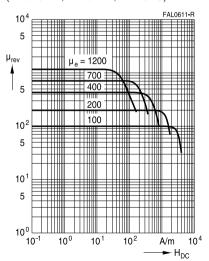


N92

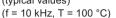

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

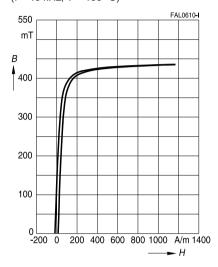
Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)


Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

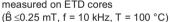


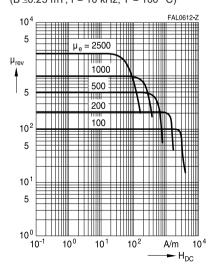
N92


Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

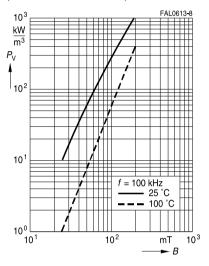


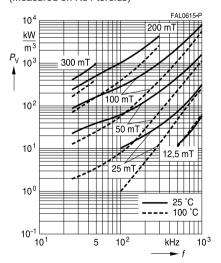
DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$




Please read Important notes on page 2 and Cautions and warnings on page 609. Dynamic magnetization curves (typical values)

DC magnetic bias measured on ETD cores

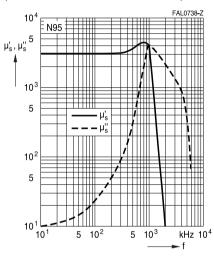


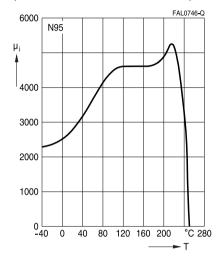


N92

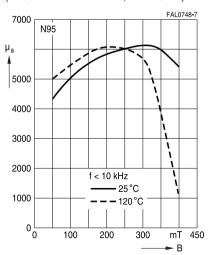
Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

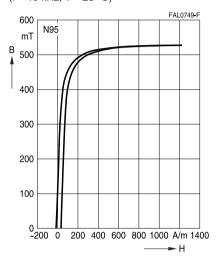

Relative core losses versus temperature (measured on R34 toroids)



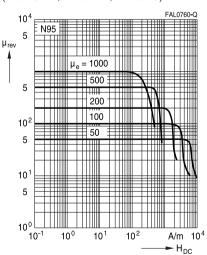
N95

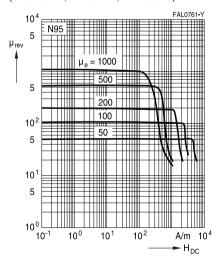

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)

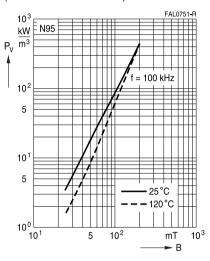

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

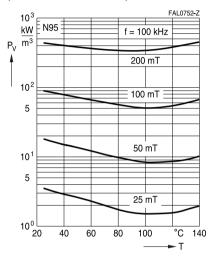
N95


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

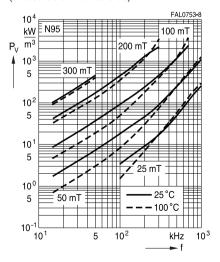

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias measured on ETD cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)


DC magnetic bias measured on ETD cores (B
≤0.25 mT, f = 10 kHz, T = 100 °C)

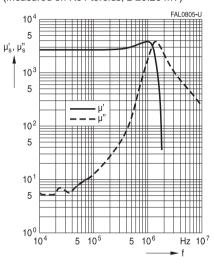


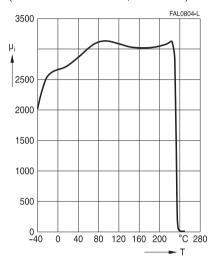
N95


Relative core losses versus AC field flux density (measured on R34 toroids)

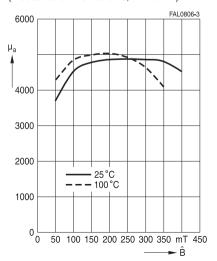
Relative core losses versus temperature (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)



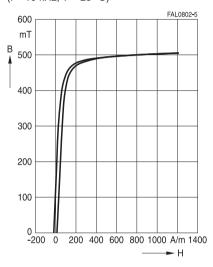

N96

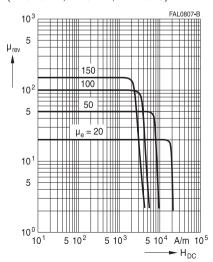
Preliminary data


Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

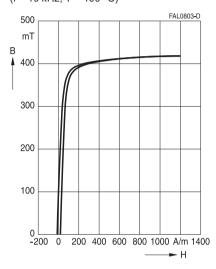
Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)

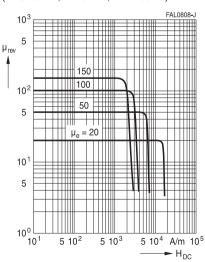
Amplitude permeability versus AC field flux density (measured on R34 toroids, f < 10kHz)




N96

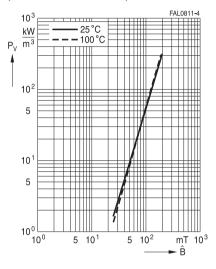
Preliminary data

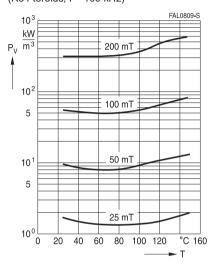

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)


DC Magnetic bias measured on EQ30 cores ($\hat{B} \le 0.25 \text{ mT}$, f =10 kHz, T = 25 °C)

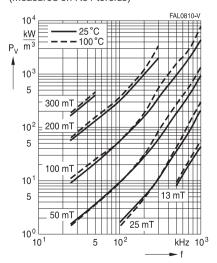
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC Magnetic bias measured on EQ30 cores ($\hat{B} \le 0.25$ mT, f =10 kHz, T = 100 °C)

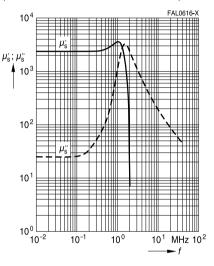


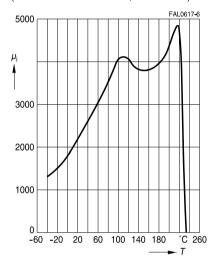

N96

Preliminary data

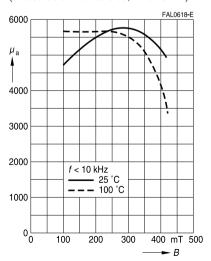

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus temperature (R34 toroids, f = 100 kHz)


Relative core losses versus frequency (measured on R34 toroids)

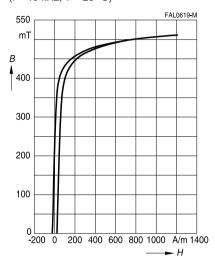


N97

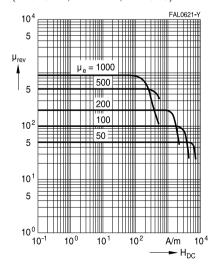

Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \leq 0.25$ mT)

Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

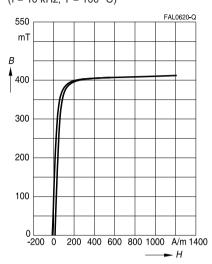


04/13

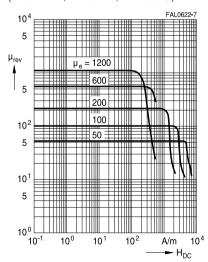


N97

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

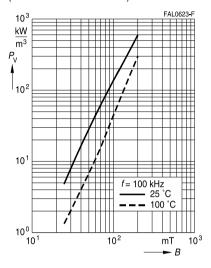


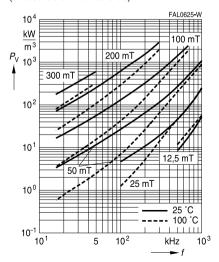
DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$



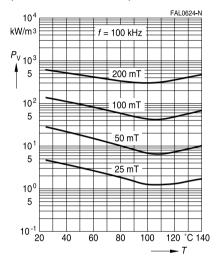
Please read Important notes on page 2 and Cautions and warnings on page 609.

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

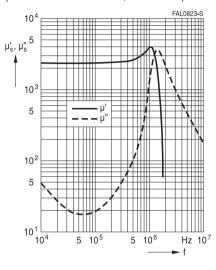

DC magnetic bias measured on ETD cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

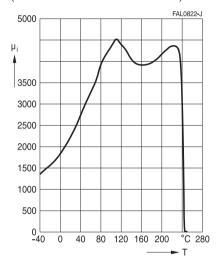


N97

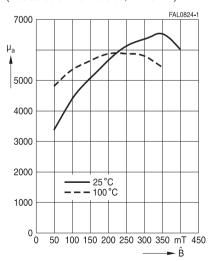

Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

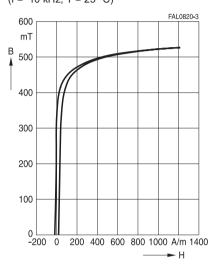

Relative core losses versus temperature (measured on R34 toroids)

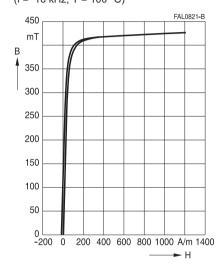


PC47


Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25 \text{ mT}$)

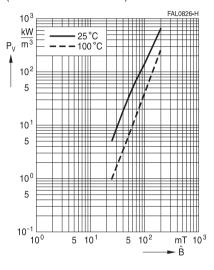
Initial Permeability µi versus temperature (measured on R34 toroid $\hat{B} \le 0.25 \text{ mT}$)

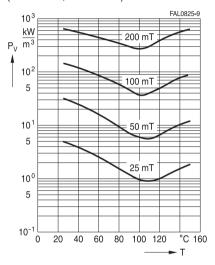

Amplitude permeability versus AC field flux density (measured on R34 toroids, f < 10kHz)



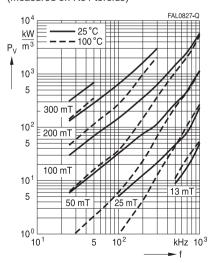
PC47

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

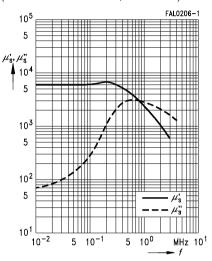

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

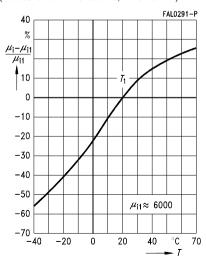


PC47

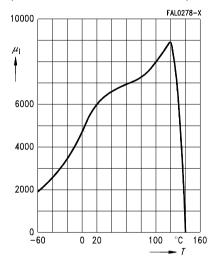

Relative core losses versus AC field flux density (measured on R34 toroids)

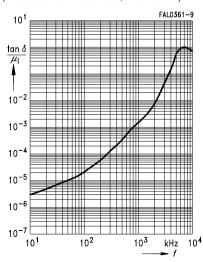
Relative core losses versus temperature (R34 toroids, f = 100 kHz)


Relative core losses versus frequency (measured on R34 toroids)

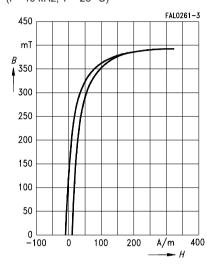


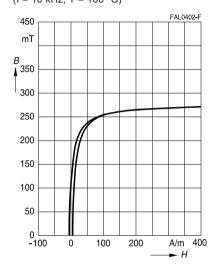
T35


Complex permeability versus frequency (measured on R10 toroids, $\hat{B} \le 0.25 \text{ mT}$)

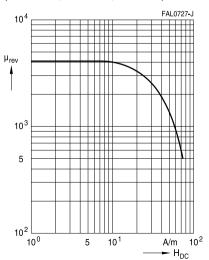

Variation of initial permeability with temperature (measured on R16 toroids, $\hat{B} \le 0.25 \text{ mT}$)

Initial permeability μ versus temperature (measured on R16 toroids, $\hat{B} \le 0.25$ mT)


Relative loss factor versus frequency (measured on R16 toroids, B ≤0.25 mT)

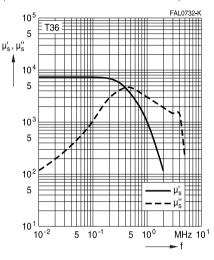


T35

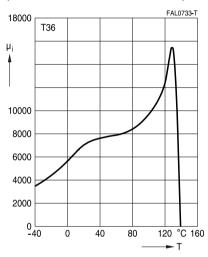

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

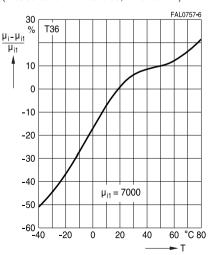
DC magnetic bias (measured on RM cores, typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

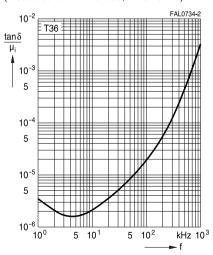


04/13

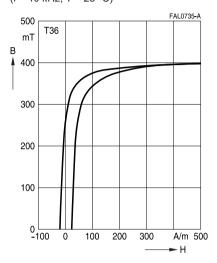


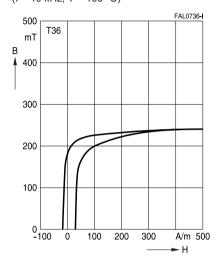
T36


Complex permeability versus frequency (measured on R22 toroids, B ≤0.25 mT)


Initial permeability μ versus temperature (measured on R22 toroids, $\hat{B} \le 0.25$ mT)

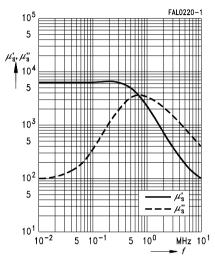
Variation of initial permeability with temperature (measured on R22 toroids, B ≤0.25 mT)

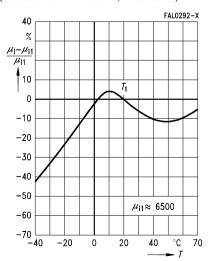

Relative loss factor versus frequency (measured on R22 toroids, B ≤0.25 mT)



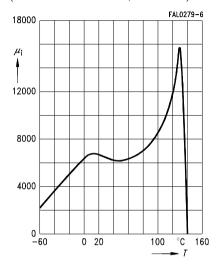
T36

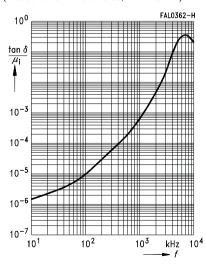
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

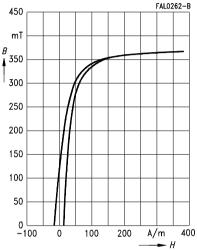


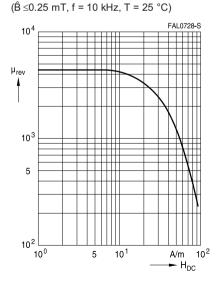
T37


Complex permeability versus frequency (measured on R16 toroids, $\hat{B} \le 0.25 \text{ mT}$)

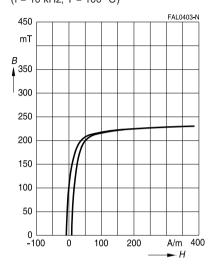

Variation of initial permeability with temperature (measured on R22 toroids, B ≤0.25 mT)

Initial permeability u. versus temperature (measured on R22 toroids, $\hat{B} \le 0.25$ mT)

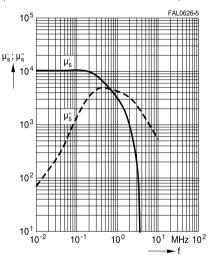

Relative loss factor versus frequency (measured on R16 toroids, B ≤0.25 mT)

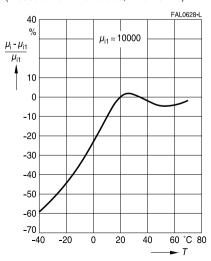


T37

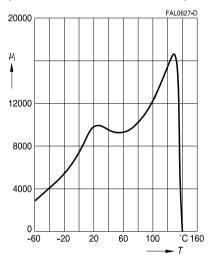

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

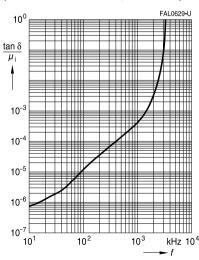
DC magnetic bias (measured on RM cores, typical values)


Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

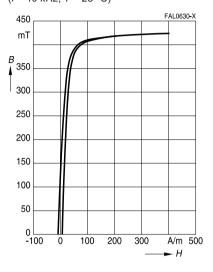


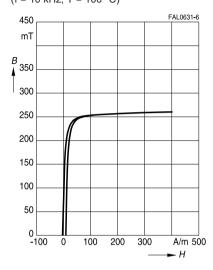
T38


Complex permeability versus frequency (measured on R10 toroids, B ≤0.25 mT)

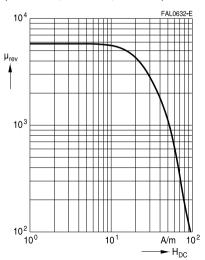

Variation of initial permeability with temperature (measured on R10 toroids, $\hat{B} \le 0.25 \text{ mT}$)

Initial permeability μ_i versus temperature (measured on R10 toroids, $\hat{B} \le 0.25$ mT)

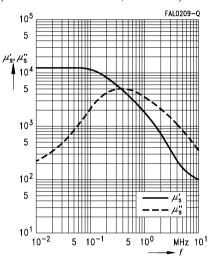

Relative loss factor versus frequency (measured on R10 toroids, B ≤0.25 mT)

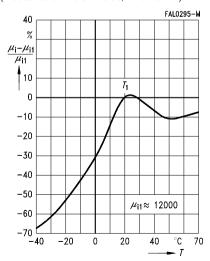


T38

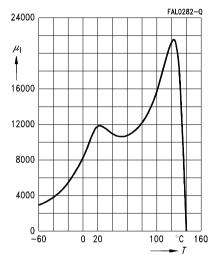

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

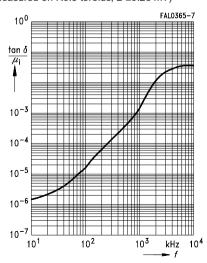
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias (measured on RM cores, typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

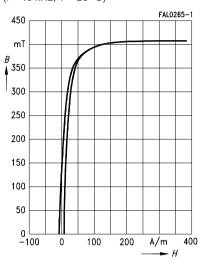


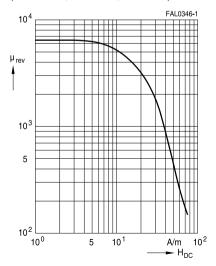
T46


Complex permeability versus frequency (measured on R9.5 toroids, B ≤0.25 mT)

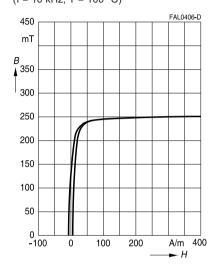

Variation of initial permeability with temperature (measured on R9.5 toroids, B ≤0.25 mT)

Initial permeability μ versus temperature (measured on R9.5 toroids, $\hat{B} \le 0.25 \text{ mT}$)

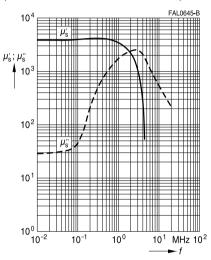

Relative loss factor versus frequency (measured on R9.5 toroids, B̂ ≤0.25 mT)

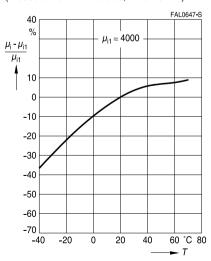


T46

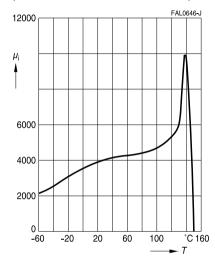

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

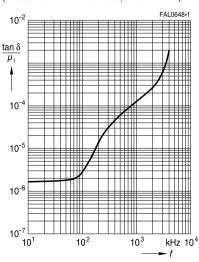
DC magnetic bias (measured on RM cores, typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$


Please read Important notes on page 2 and Cautions and warnings on page 609. Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

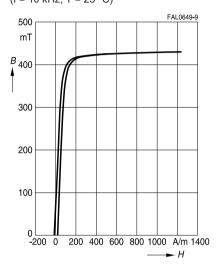


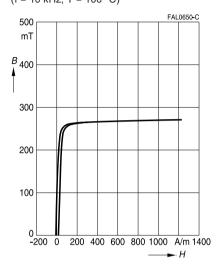
T57


Complex permeability versus frequency (measured on R17 toroids, $\hat{B} \le 0.25$ mT)


Variation of initial permeability with temperature (measured on R17 toroids, $\hat{B} \le 0.25$ mT)

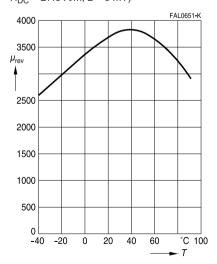
Initial permeability μ_i versus temperature (measured on R17 toroids, $\hat{B} \leq 0.25$ mT)


Relative loss factor versus frequency (measured on R17 toroids, $\hat{B} \le 0.25$ mT)



T57

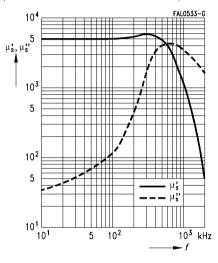
Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$



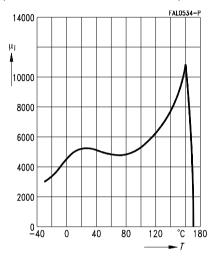
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Reversible permeability versus temperature (measured on toroids at f = 100 kHz,

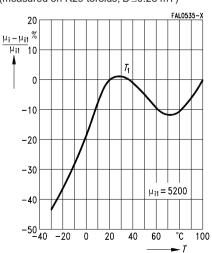
$$\hat{H}_{DC} = 27.5 \text{ A/m}, \hat{B} = 6 \text{ mT}$$

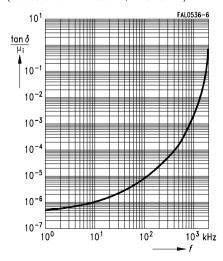


04/13

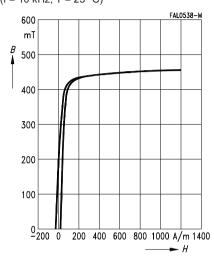


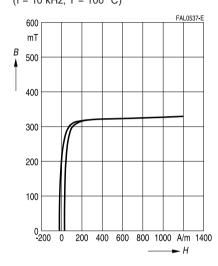
T65


Complex permeability versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

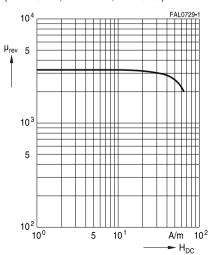

Initial permeability μ_i versus temperature (measured on R29 toroids, $\hat{B} \leq 0.25$ mT)

Variation of initial permeability with temperature (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

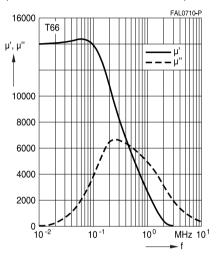

Relative loss factor versus frequency (measured on R29 toroids, $\hat{B} \le 0.25$ mT)

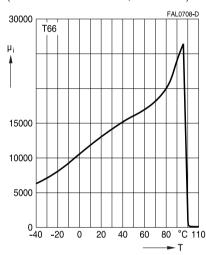


T65

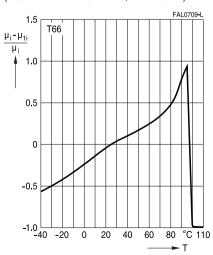

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

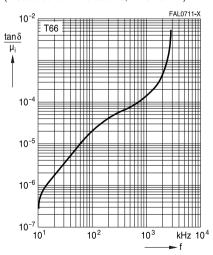
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)


DC magnetic bias (measured on RM cores, typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

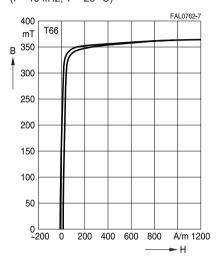


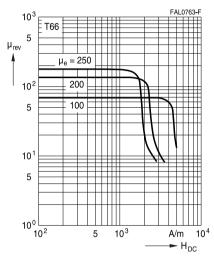
T66


Complex permeability versus frequency (measured on R9.5 toroids, B ≤0.25 mT)


Initial permeability μ_i versus temperature (measured on R9.5 toroids, $\hat{B} \le 0.25 \text{ mT}$)

Variation of initial permeability with temperature (measured on R9.5 toroids, B ≤0.25 mT)


Relative loss factor versus frequency (measured on R9.5 toroids, $\hat{B} \le 0.25 \text{ mT}$)



T66

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias (measured on RM cores, typical values) ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Plastic materials

5 Plastic materials, manufacturers and UL numbers

- RM coil formers of thermosetting plastic, color code white (molded-in pins): Bakelite UP 3420° [E61040 (M)], HEXION SPECIALTY CHEMICALS GMBH
- RM, EP, EFD and PQ coil formers of thermosetting plastic, color code black (post-inserted pins): Sumikon PM 9630° [E41429 (M)], SUMITOMO BAKELITE CO LTD Sumikon PM 9820° [E41429 (M)], SUMITOMO BAKELITE CO LTD
- RM, EP and EFD coil formers of thermosetting plastic, color code green (post-inserted pins): Vyncolit/X611° [E167521 (M)], VYNCOLIT NV
- RM power, P, PS, PM, E, ETD, ER coil formers and terminal carriers P9×5, P11×7, P36×22 (Polyterephthalate): Valox 420-SE0° [E45329 (M)], SABIC INNOVATIVE PLASTICS Valox 420-SE0° [E207780 (M)], SABIC INNOVATIVE PLASTICS Valox 420-SE0° [E121562 (M)], SABIC INNOVATIVE PLASTICS Durethan BKV 30H, [E 245249 (M)], LANXESS AG Ultramid A3X2G5 [E41871 (M)], BASF AKTIENGESELLSCHAFT Ultradur 4090G6 [E41871 (M)], BASF SE Crastin SK 645 FR [E41938 (M)], E I DUPONT DE NEMOURS & CO INC Pocan B4235° [E245249 (M)], LANXESS AG Rynite FR 530° [E41938 (M)], E I DUPONT DE NEMOURS & CO INC
- Terminal carriers P14×8, P18×11, P26×16, P30×19 (Polyterephthalate): Pocan B4235® [E245249 (M)], LANXESS AG
- PM114 coil former and terminal carrier P7×4 (PPS): Ryton R-4, [E54700 (M)], CHEVRON PHILLIPS CHEMICAL CO L P Ryton R-4, [E233198 (M)], CHEVRON PHILLIPS CHEMICAL CO L P
- SMD coil formers (Liquid cristal polymer):
 Sumika Super E4008° [E54705 (M)], SUMITOMO CHEMICAL CO LTD
 Zenite 7130° [E344082 (M)], TICONA
 Vectra C 130 [E106764 (M)], POLYPLASTICS CO LTD
 Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD
 Vectra E 130i [E83005 (M)], TICONA
 Stanyl TW250F6 [E47960 (M)], DSM ENGINEERING PLASTICS B V
- Insulating washers: Makrofol FR7-2, [E118859 (M)], BAYER MATERIALSCIENCE AG Aryphan F685, [E167358 (M)], LOFO HIGH TECH FILM GMBH
- Adjusting screws and threaded sleeves:
 Pocan B3235° [E245249 (M)], LANXESS AG
 Rilsan BZM30, [E45228 (M)], ARKEMA SA (for threaded sleeves)
- PQ coil formers: Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD

Rights to change material reserved.

Further information is given on the packing label.

Plastic materials

The trade names are registered trademarks of the listed manufacturers.

Further information to the UL certifications are available in the internet under http//:www.UL.com Here you get the newest update of the yellow card.

EPCOS is an assigned molder with the UL file no. E178263 (M).

The assigned designation is A1770.

Definitions

1 Hysteresis

The special feature of ferromagnetic and ferrimagnetic materials is that spontaneous magnetization sets in below a material-specific temperature (Curie point). The elementary atomic magnets are then aligned in parallel within macroscopic regions. These so-called Weiss' domains are normally oriented so that no magnetic effect is perceptible. But it is different when a ferromagnetic body is placed in a magnetic field and the flux density B as a function of the magnetic field strength H is measured with the aid of a test coil. Proceeding from H = 0 and B = 0, the so-called initial magnetization curve is first obtained. At low levels of field strength, those domains that are favorably oriented to the magnetic field grow at the expense of those that are not. This produces what are called wall displacements. At higher field strength, whole domains overturn magnetically – this is the steepest part of the curve – and finally the magnetic moments are moved out of the preferred states given by the crystal lattice into the direction of the field until saturation is obtained, i.e. until all elementary magnets in the material are in the direction of the field. If H is now reduced again, the B curve is completely different. The relationship shown in the hysteresis loop (figure 1) is obtained.

1.1 Hysteresis loop

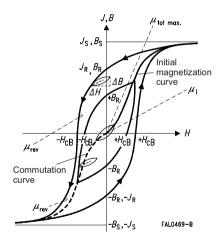


Figure 1 Magnetization curve (schematic)

Magnetic flux density

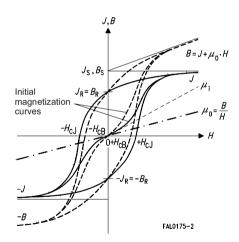


Figure 2 Hysteresis loops for different excitations and materials

$$\text{Magnetic field strength} \qquad \qquad \text{H} = \frac{I \cdot N}{I} = \frac{\text{ampere-turns}}{\text{length in m}} \qquad \qquad \boxed{ }$$

$$B = \frac{\phi}{A} = \frac{\text{magnetic flux}}{\text{permeated area}} \qquad \left[\frac{\text{Vs}}{\text{m}^2}\right] = [T(\text{Tesla})]$$

$$Polarization \ J \ = \ B - \mu_0 H \qquad \qquad \mu_0 \cdot H \ \ \ \ \ J \Rightarrow B \approx J$$

Definitions

General relationship between B and H:

$$B = \mu_0 \cdot \mu_r(H) \cdot H$$

μ₀ Magnetic field constant

$$\mu_0 = 1.257 \cdot 10^{-6} \left[\frac{\text{Vs}}{\text{Am}} \right]$$

μ_r Relative permeability

In a vacuum, μ_r = 1; in ferromagnetic or ferrimagnetic materials the relation B(H) becomes nonlinear and the slope of the hysteresis loop μ_r >> 1.

1.2 Basic parameters of the hysteresis loop

1.2.1 Initial magnetization curve

The initial magnetization curve describes the relationship B = μ_r μ_0 H for the first magnetization following a complete demagnetization. By joining the end points of all "sub-loops", from H = 0 to H = H_{max}, (as shown in figure 1), we obtain the so-called commutation curve (also termed normal or mean magnetization curve), which, for magnetically soft ferrite materials, coincides with the initial magnetization curve.

1.2.2 Saturation magnetization B_S

The saturation magnetization B_S is defined as the maximum flux density attainable in a material (i.e. for a very high field strength) at a given temperature; above this value B_S , it is not possible to further increase B(H) by further increasing H.

Technically, B_S is defined as the flux density at a field strength of H = 1200 A/m. As is confirmed in the actual magnetization curves in the chapter on "Materials", the B(H) characteristic above 1200 A/m remains roughly constant (applies to all ferrites with high initial permeability, i.e. where $\mu \ge 1000$).

1.2.3 Remanent flux density B_R(H)

The remanent flux density (residual magnetization density) is a measure of the degree of residual magnetization in the ferrite after traversing a hysteresis loop. If the magnetic field H is subsequently reduced to zero, the ferrite still has a material-specific flux density $B_R \neq 0$ (see figure 1: intersection with the ordinate H = 0).

1.2.4 Coercive field strength H_C

The flux density B can be reduced to zero again by applying a specific opposing field $-H_C$ (see figure 1: intersection with the abscissa B = 0).

The demagnetized state can be restored at any time by:

- a) traversing the hysteresis loop at a high frequency and simultaneously reducing the field strength H to H = 0.
- b) by exceeding the Curie temperature T_C.

Definitions

2 Permeability

Different relative permeabilities μ are defined on the basis of the hysteresis loop for the various electromagnetic applications.

2.1 Initial permeability μ_i

$$\mu_{i} = \frac{1}{\mu_{0}} \cdot \frac{\Delta B}{\Delta H} \qquad (\Delta H \to 0)$$

The initial permeability μ_i defines the relative permeability at very low excitation levels and constitutes the most important means of comparison for soft magnetic materials. According to IEC 60401-3, μ_i is defined using closed magnetic circuits (e.g. a closed ring-shaped cylindrical coil) for $f \le 10$ kHz. B <0.25 mT. T = 25 °C.

2.2 Effective permeability u_o

Most core shapes in use today do not have closed magnetic paths (only ring, double E or double-aperture cores have closed magnetic circuits), rather the circuit consists of regions where $\mu_i \neq 1$ (ferrite material) and μ_i = 1 (air gap). Figure 3 shows the shape of the hysteresis loop of a circuit of this type.

In practice, an effective permeability μ_e is defined for cores with air gaps.

$$\mu_e = \frac{1}{\mu_0} \frac{L}{N^2} \sum \frac{I}{A} \qquad \qquad \sum \frac{I}{A} \qquad \qquad \sum \frac{I}{A} \qquad \text{Form factor}$$

$$\qquad \qquad \qquad L \qquad \text{Inductance}$$

$$\qquad \qquad N \qquad \text{Number of turns}$$

It should be noted, for example, that the loss factor $\tan \delta$ and the temperature coefficient for gapped cores reduce in the ratio μ_e/μ_i compared to ungapped cores.

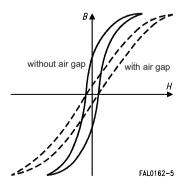


Figure 3
Comparison of hysteresis loops for a core with and without an air gap

Definitions

The following approximation applies for an air gap s « la:

$$\mu_e = \frac{\mu_i}{1 + \frac{s}{l_a} \cdot \mu_i}$$

s Width of air gap

I_e Effective magnetic path length

For more precise calculation methods, see for example E.C. Snelling, "Soft ferrites", 2nd edition.

2.3 Apparent permeability μ_{app}

$$\mu_{app} \,=\, \frac{L}{L_0} \,=\, \frac{\text{inductance with core}}{\text{inductance without core}}$$

The definition of μ_{app} is particularly important for specification of the permeability for coils with tubular, cylindrical and threaded cores, since an unambiguous relationship between initial permeability μ_i and effective permeability μ_e is not possible on account of the high leakage inductances. The design of the winding and the spatial correlation between coil and core have a considerable influence on μ_{app} . A precise specification of μ_{app} requires a precise specification of the measuring coil arrangement.

2.4 Complex permeability $\overline{\mu}$

To enable a better comparison of ferrite materials and their frequency characteristics at very low field strengths (in order to take into consideration the phase displacement between voltage and current), it is useful to introduce μ as a complex operator, i.e. a complex permeability $\overline{\mu}$, according to the following relationship:

$$\frac{-}{\mu} = \mu_e' - \mathbf{i} \cdot \mu_e''$$

where, in terms of a series equivalent circuit, (see figure 5)

 μ_s is the relative real (inductance) component of $\overline{\mu}$

and μ_s " is the relative imaginary (loss) component of $\overline{\mu}$.

Using the complex permeability $\overline{\mu}$, the (complex) impedance of the coil can be calculated:

$$\overline{Z} = i \omega \overline{\mu} L_0$$

where L_0 represents the inductance of a core of permeability μ_r = 1, but with unchanged flux distribution.

(cf. also section 4.1: information on $tan \delta$)

Definitions

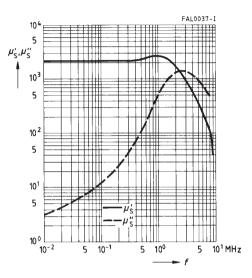


Figure 4
Complex permeability versus frequency
(measured on R10 toroids, N48 material, measuring flux density \hat{B} ≤0.25 mT)

Figure 4 shows the characteristic shape of the curves of μ_s ' and μ_s " as functions of the frequency, using N48 material as an example. The real component μ_s ' is constant at low frequencies, attains a maximum at higher frequencies and then drops in approximately inverse proportion to f. At the same time, μ " rises steeply from a very small value at low frequencies to attain a distinct maximum and, past this, also drops as the frequency is further increased.

The region in which μ ' decreases sharply and where the μ " maximum occurs is termed the cut-off frequency f_{cutoff} . This is inversely proportional to the initial permeability of the material (Snoek's law).

2.5 Reversible permeability μ_{rev}

$$\mu_{\text{rev}} = \frac{1}{\mu_0} \cdot \lim_{\Delta H \to 0} \left(\frac{\Delta B}{\Delta H} \right)_{\text{H}_{DC}} \text{ (Permeability with superimposed DC field H}_{DC})$$

In order to measure the reversible permeability μ_{rev} , a small measuring alternating field is superimposed on a DC field. In this case μ_{rev} is heavily dependent on H_{DC} , the core geometry and the temperature.

Important application areas for DC field-superimposed, i.e. magnetically biased coils are broadband transformer systems (feeding currents with signal superimposition) and power engineering (shifting the operating point) and the area known as "nonlinear chokes" (cf. chapter on RM cores). For the magnetic bias curves as a function of the excitation H_{DC} see the chapter on "SIFERRIT materials".

Definitions

2.6 Amplitude permeability μ_a , A_{L1} value

$$\mu_{a} = \frac{\hat{B}}{\mu_{0}\hat{H}}$$
 (Permeability at high excitation)

- B Peak value of flux density
- Ĥ Peak value of field strength

For frequencies well below cut-off frequency, μ_a is not frequency-dependent but there is a strong dependence on temperature. The amplitude permeability is an important definition quantity for power ferrites. It is defined for specific core types by means of an A_{L1} value for f \leq 10 kHz, B = 320 mT (or 200 mT), T = 100 °C.

$$A_{L1} = \frac{\mu_0 \cdot \mu_a}{\sum \frac{I}{A}}$$

Definitions

3 Magnetic core shape characteristics

Permeabilities and also other magnetic parameters are generally defined as material-specific quantities. For a particular core shape, however, the magnetic data are influenced to a significant extent by the geometry. Thus, the inductance of a slim-line ring core coil is defined as:

$$L = \mu_r \cdot \mu_0 \cdot N^2 \cdot \frac{A}{I}$$

Due to their geometry, soft magnetic ferrite cores in the field of such a coil change the flux parameters in such a way that it is necessary to specify a series of effective core shape parameters in each data sheet. The following are defined:

l_e Effective magnetic length
A_e Effective magnetic cross section

A_{min} Min. magnetic cross section of the core

(required to calculate the max. flux density)

V_e = A_e I_e Effective magnetic volume

With the aid of these parameters, the calculation for ferrite cores with complicated shapes can be reduced to the considerably more simple problem of an imaginary ring core with the same magnetic properties. The basis for this is provided by the methods of calculation according to IEC 60205, which allow to calculate the effective core shape parameters of different core shapes.

3.1 Form factor

$$\sum \frac{I}{A} = \frac{I_e}{A_e}$$

The inductance L can then be calculated as follows:

$$L = \frac{\mu_e \cdot \mu_0 \cdot N^2}{\sum \frac{I}{A}}$$

where μ_e denotes the effective permeability or another permeability μ_{rev} or μ_a (or μ_i for cores with a closed magnetic path) adapted for the B/H range in question.

3.2 Inductance factor, A₁ value

$$A_L \,=\, \frac{L}{N^{\,2}} \,=\, \frac{\mu_e \cdot \mu_0}{\displaystyle \sum \frac{I}{A}} \label{eq:AL}$$

A₁ is the inductance referred to number of turns = 1. Therefore, for a defined number of turns N:

$$L = A_1 \cdot N^2$$

Definitions

3.3 Tolerance code letters

The tolerances of the A_L are coded by the letters in the third block of the ordering code in conformity with IEC 62358.

Code letter	Tolerance of A _L value	Code letter	Tolerance of A _L value
A	±3%	L	±15%
В	±4%	М	±20%
С	±6%	Q	+30/–10%
D	±8%	R	+30/–20%
E	±7%	U	+80/-0%
Н	±12%	Х	filling letter
J	±5%	Υ	+40/–30%
K	±10%		

The tolerance values available are given in the individual data sheets.

Definitions

4 Definition quantities in the small-signal range

4.1 Loss factor $\tan \delta$

Losses in the small-signal range are specified by the loss factor $\tan \delta$.

Based on the impedance \overline{Z} (cf. also section 2.4), the loss factor of the core in conjunction with the complex permeability \overline{u} is defined as

$$\tan \delta_s = \frac{\mu_s "}{\mu_s '} = \frac{R_s}{\omega L_s} \qquad \qquad \text{and} \qquad \qquad \tan \delta_p = \frac{\mu_p "}{\mu_p '} = \frac{\omega \cdot L_p}{R_p}$$

where R_s and R_p denote the series and parallel resistance and L_s and L_n the series and parallel inductance respectively.

R_p

Figure 5 Lossless series inductance $L_{\rm s}$ with loss resistance $R_{\rm s}$ resulting from the core losses.

Figure 6 Lossless parallel inductance L_p with loss resistance R_p resulting from the core losses.

From the relationships between series and parallel circuits we obtain:

$$\mu_{p}' = \mu_{s}' \cdot (1 + (\tan \delta)^{2})$$

$$\mu_{p}'' = \mu_{s}'' \cdot \left(1 + \left(\frac{1}{\tan s}\right)^{2}\right)$$

4.2 Relative loss factor $\tan \delta/\mu_i$

In gapped cores the material loss factor $\tan \delta$ is reduced by the factor μ_e/μ_i . This results in the relative loss factor $\tan \delta_e$ (cf. also section 2.2):

$$tan \, \delta_e \, = \, \frac{tan \, \delta}{\mu_i} \cdot \mu_e$$

The table of material properties lists the relative loss factor $\tan\delta/\mu_i$. This is determined to IEC 60401-3 at B = 0.25 mT, T = 25 °C.

Definitions

4.3 Quality factor Q

The ratio of reactance to total resistance of an induction coil is known as the quality factor Q.

$$Q = \frac{\omega L}{R_I} = \frac{reactance}{total \ resistance}$$

The total quality factor Q is the reciprocal of the total loss factor $\tan \delta$ of the coil; it is dependent on the frequency, inductance, temperature, winding wire and permeability of the core.

4.4 Hysteresis loss resistance R_h and hysteresis material constant η_B

In transformers, in particular, the user cannot always be content with very low saturation. The user requires details of the losses which occur at higher saturation, e.g. where the hysteresis loop begins to open.

Since this hysteresis loss resistance R_h can rise sharply in different flux density ranges and at different frequencies, it is measured to IEC 60401-3 for μ_i values greater than 500 at B_1 = 1.5 and B_2 = 3 mT (ΔB = 1.5 mT), a frequency of 10 kHz and a temperature of 25 °C (for μ_i < 500: f = 100 kHz, B_1 = 0.3 mT, B_2 = 1.2 mT). The hysteresis loss factor $\tan \delta_h$ can then be calculated from this.

$$\tan \delta_h = \frac{R_h}{\omega \cdot L} = \tan \delta(B_2) - \tan \delta(B_1)$$

For the hysteresis material constant η_B we obtain:

$$\eta_{B} = \frac{tan \, \delta_{h}}{\mu_{e} \cdot \Delta \, \hat{B}}$$

The hysteresis material constant, η_B , characterizes the material-specific hysteresis losses and is a quantity independent of the air gap in a magnetic circuit.

The hysteresis loss factor of an inductor can be reduced, at a constant flux density, by means of an (additional) air gap

$$tan \, \delta_{h} = \, \eta_{B} \cdot \Delta \, \hat{B} \cdot \mu_{e}$$

For further details on the measurement techniques see IEC 62044-2.

Definitions

5 Definition quantities in the high-excitation range

While in the small-signal range ($H \le H_c$), i.e. in filter and broadband applications, the hysteresis loop is generally traversed only in lancet form (figure 2), for power applications the hysteresis loop is driven partly into saturation. The defining quantities are then

 μ_{rev} = reversible permeability in the case of superimposition with a DC signal (operating point for power transformers)

 μ_a = amplitude permeability and

P_V = core losses.

5.1 Core losses P_V

The losses of a ferrite core or core set P_V is proportional to the area of the hysteresis loop in question. It can be divided into three components:

$$P_V = P_{V, \text{ hysteresis}} + P_{V, \text{ eddycurrent}} + P_{V, \text{ residual}}$$

Owing to the high specific resistance of ferrite materials, the eddy current losses in the frequency range common today (1 kHz to 2 MHz) may be practically disregarded except in the case of core shapes having a large cross-sectional area.

The power loss P_V is a function of the temperature T, the frequency f, the flux density B and is of course dependent on ferrite material and core shape.

The temperature dependence can generally be approximated by means of a third-order polynomial, while

$$P_{V}(f) \sim f^{(1+x)} \qquad \qquad 0 \le x \le 1$$

applies for the frequency dependence and

$$P_{V}(B) \sim B^{(2+y)}$$
 $0 \le y \le 1$

for the flux density dependence. The coefficients x and y are dependent on core shape and material, and there is a mutual dependence between the coefficients of the definition quantity (e.g. T) and the relevant parameter set (e.g. f, B).

In the case of cores which are suitable for power applications, the total core losses P_V are given explicitly for a specific frequency f, flux density B and temperature T in the relevant data sheets.

When determining the total power loss for an inductive component, the winding losses must also be taken into consideration in addition to the core-specific losses.

$$P_{V, tot} = P_{V, core} + P_{V, winding}$$

where, in addition to insulation conditions in the given frequency range, skin effect and proximity effect must also be taken into consideration for the winding.

Definitions

5.2 Performance factor (PF = $f \cdot B_{max}$)

The performance factor is a measure of the maximum power which a ferrite can transmit, whereby it is generally assumed that the loss does not exceed 300 kW/m³. Heat dissipation values of this order are usually assumed when designing small and medium-sized transformers. Increasing the performance factor will either enable an increase of the power that can be transformed by a core of identical design, or a reduction in component size if the transformed power is not increased.

If the performance factors of different power transformer materials are plotted as a function of frequency, only slight differences are observed at low frequencies (< 300 kHz), but these differences become more pronounced with increasing frequency. This diagram can be used to determine the optimum material for a given frequency range (for diagram see page 49).

Definitions

6 Influence of temperature

6.1 $\mu(T)$ curve, Curie temperature T_C

The initial permeability μ_i as a function of T is given for all materials (see chapter on SIFERRIT materials). Important parameters for a $\mu(T)$ curve are the position of the **s**econdary **p**ermeability **m**aximum (SPM) and the Curie temperature. Minimum losses occur at the SPM temperature.

Above the Curie temperature T_C ferrite materials lose their ferrimagnetic properties, i.e. μ_i drops to μ_i = 1. This means that the parallel alignment of the elementary magnets (spontaneous magnetization) is destroyed by increasing thermal activation. This phenomenon is reversible, i.e. when the temperature is reduced below T_C again, the ferrimagnetic properties are restored.

The Curie temperature T_C is defined as the cross of the straight line between 80% and 20% of L_{max} with the temperature axes (figure 7).

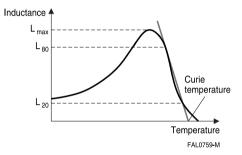


Figure 7
Definition of Curie temperature

6.2 Temperature coefficient of permeability α

By definition the temperature coefficient α represents a straight line of average gradient between the reference temperatures T_1 and T_2 . If the $\mu(T)$ curve is approximately linear in this temperature range, this is a good approximation; in the case of heavily pronounced maxima, as occur particularly with highly permeable broadband ferrites, however, this is less true. The following applies:

$$\alpha \,=\, \frac{\mu_{i2}-\mu_{i1}}{\mu_{i1}}\cdot\frac{1}{T_2-T_1}$$

 μ_{i1} Initial permeability μ_{i} at $T_1 = 25$ °C

 μ_{i2} The initial permeability μ_{i} associated with the temperature T_{2}

6.3 Relative temperature coefficient α_F

$$\alpha_F \,=\, \frac{\alpha}{\mu_i} \,=\, \frac{\mu_{i2}-\mu_{i1}}{\mu_{i2}\cdot\mu_{i1}}\cdot\frac{1}{T_2-T_1}$$

In a magnetic circuit with an air gap and the effective permeability μ_e the temperature coefficient is reduced by the factor μ_e/μ_i (cf. also section 2.2).

Definitions

6.4 Permeability factor

The first factor in the equation for determining the relative temperature coefficient $\frac{\mu_{i2} - \mu_{i1}}{\mu_{i2} \cdot \mu_{i1}}$ is known as the permeability factor.

In the case of SIFERRIT materials for resonant circuits, the temperature dependence of the permeability factor can be seen from the relevant diagram.

6.5 Effective temperature coefficient α_{e}

$$\alpha_{e} \,=\, \frac{\mu_{e}}{\mu_{i}} \cdot \alpha$$

In the case of the ferrite materials for filter applications, the α/μ_i values for the ranges 25 to 55 °C and 5 to 25 °C are given in the table of material properties.

The effective permeability μ_e is required in order to calculate α_e ; therefore this is given for each core in the individual data sheets.

6.6 Relationship between the change in inductance and the permeability factor

The relative change in inductance between two temperature points can be calculated as follows:

$$\frac{L_2 - L_1}{L_1} = \frac{\alpha}{\mu_i} \cdot (T_2 - T_1) \cdot \mu_e$$

$$\frac{L_2 \! - \! L_1}{L_1} = \frac{\mu_{i2} \! - \! \mu_{i1}}{\mu_{i2} \cdot \mu_{i1}} \mu_e$$

6.7 Temperature dependence of saturation magnetization

The saturation magnetization B_S drops monotonically with temperature and at T_C has fallen to $B_S = 0$ mT. The drop for $B_S(25~^{\circ}C)$ and $B_S(100~^{\circ}C)$, i.e. the main area of application for the ferrites, can be taken from the table of material properties.

6.8 Temperature dependence of saturation-dependent permeability (amplitude permeability)

It can be seen from the $\mu_a(B)$ curves for the different materials that μ_a exhibits a more pronounced maximum with increasing temperature and drops off sooner on account of decreasing saturation.

Definitions

7 Disaccommodation

Ferrimagnetic states of equilibrium can be influenced by mechanical, thermal or magnetic changes (shocks). Generally, an increase in permeability occurs when a greater mobility of individual magnetic domains is attained through the external application of energy. This state is not temporally stable and returns logarithmically with time to the original state.

7.1 Disaccommodation coefficient d

$$\text{d} \, = \, \frac{\mu_{i1} - \mu_{i2}}{\mu_{i1} \cdot (\text{lgt}_2 - \text{lgt}_1)}$$

 μ_{i1} Permeability at time t_1 μ_{i2} Permeability at time t_2 and $t_2 > t_1$

7.2 Disaccommodation factor DF

$$\mathsf{DF} = \frac{\mathsf{d}}{\mu_{i1}}$$

Accordingly, a change in inductance can be calculated with the aid of DF:

$$\frac{\textbf{L}_1 - \textbf{L}_2}{\textbf{L}_1} \, = \, \textbf{DF} \cdot \boldsymbol{\mu}_e \cdot \text{log} \frac{t_2}{t_1}$$

Definitions

8 General mechanical, thermal, electrical and magnetic properties of ferrites

Typical figures for the mechanical and thermal properties of ferrites

Tensile strength	approx. 30 N/mm ²		
Compressive strength	approx. 800 N/mm ²		
Vickers hardness HV ₁₅	approx. 600 N/mm ²		
Modulus of elasticity	approx. 150000 N/mm ²		
Fracture toughness K _{1c}	approx. 0.8 1.1 MPam ^{1/2}		
Thermal conductivity	approx. 4 7·10-3 J/mm·s·K		
Coefficient of linear expansion	approx. 7 10 ·10 ⁻⁶ 1/K		
Specific heat	approx. 0.7 J/g·K		

8.1 Mechanical properties

Ferrite cores have to meet mechanical requirements during assembling and for a growing number of applications. Since ferrites are ceramic materials one has to be aware of the special behavior under mechanical load.

As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores.

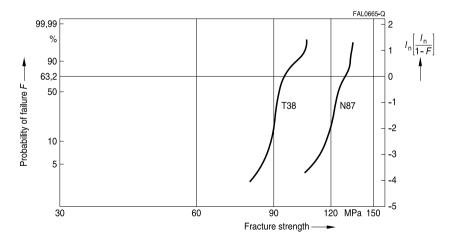


Figure 8
Weibull plot of fracture strength values of the materials T38 and N87

Definitions

There are two modes of crack growth: fast (critical) or slow (subcritical) crack propagation. In the first case spontaneous breakdown occurs. In the second case the crack propagates slowly during static or cycling loading, and then the sample can only fail if a critical crack length is achieved. According to the linear elastic fracture mechanics these two mechanisms could be described in terms of stress intensity factors. For life time predictions the knowledge of subcritical crack growth and R- (respectively K_{R-}) curve behavior of the material is essential.

The reduction of the material strength by temperature induced propagating microstructural cracks can be described as follows:

$$\sigma = \alpha \cdot \Delta T \frac{E_0}{1 + 2\pi N I^2}$$

σ Effective strength

 α Coefficient of thermal expansion (7 to 12 · 10⁻⁶ 1/K)

E₀ Modulus of elasticity

N Number of temperature changes

I Crack length

The brittleness of ferrite materials can be quantified by means of the fracture toughness. High fracture toughness values indicate decreased material brittleness. The quantity of the fracture toughness is a measure for the stress in the core necessary for a propagating crack. For the crack propagation it is required that the stress intensity factor exceeds the fracture toughness.

$$K_1 \ge K_{1C}$$
 with $K_1 = \sigma_{appl} \sqrt{I \cdot Y}$ and $K_{1C} = \sqrt{G_C E}$

K₁ Stress intensity facture

K_{1C} Fracture toughness

 σ_{appl} Applied stress

Y Factor for fracture/sample geometry

G_C Critical fracture area energy

E Modulus of elasticity

Typical fracture toughness values are approx. 0.8 to 1.1 MPam^{1/2}.

Ferrite materials have a pronounced R curve behavior, i. e. the fracture toughness increases with propagating crack length. In practice there is a rather tolerant behavior towards moderate single stress events.

8.2 Stress sensitivity of magnetic properties

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. With

$$\mu_i \cong \frac{1}{\frac{1}{\mu_{i,n}} + k \cdot \sigma_T}; \qquad \qquad k \approx 30 \cdot 10^{-6} \cdot \frac{1}{MPa}$$

where μ_{io} is the initial permeability of the unstressed material, it can be shown that the higher the stresses are in the core, the lower is the value for the initial permeability. Embedding the ferrite cores (e.g. in plastic) can induce these stresses. A permeability reduction of up to 50% and more

Definitions

can be observed, depending on the material. In this case, the embedding medium should have the greatest possible elasticity.

8.3 Magnetostriction

Linear magnetostriction is defined as the relative change in length of a magnetic core under the influence of a magnetic field. The greatest relative variation in length $\lambda = \Delta I/I$ occurs at saturation magnetization. The values of the saturation magnetostriction (λ_s) of our ferrite materials are given in the following table (negative values denote contraction).

SIFFERIT material	K1	N48
$\lambda_{\rm s}$ in 10 ⁻⁶	-18	-1.5

Magnetostrictive effects are of significance principally when a coil is operated in the frequency range <20 kHz and then undesired audible frequency effects (distortion etc.) occur.

8.4 Resistance to radiation

SIFERRIT materials can be exposed to the following radiation without significant variation ($\Delta L/L \le 1\%$ for ungapped cores):

gamma quanta: 109 rad

quick neutrons $2 \cdot 10^{20}$ neutrons/m² thermal neutrons $2 \cdot 10^{22}$ neutrons/m²

8.5 Resistivity ρ , dielectric constant ϵ

At room temperature, ferrites have a resistivity in the range 1 Ω m to 10⁵ Ω m; this value is usually higher at the grain boundaries than in the grain interior. The temperature dependence of the core resistivity corresponds to that of a semiconductor:

$$\rho \sim e^{\frac{E_a}{k \cdot T}}$$

Т

E_a Activation energy (0.1 to 0.5 eV)

k Boltzmann constant

Absolute temperature [K]

Thus the resistivity at 100 °C is one order of magnitude less than at 25 °C, which is significant, particularly in power applications, for the magnitude of the eddy-current losses.

Similarly, the resistivity decreases with increasing frequency.

Definitions

Example: Material N48

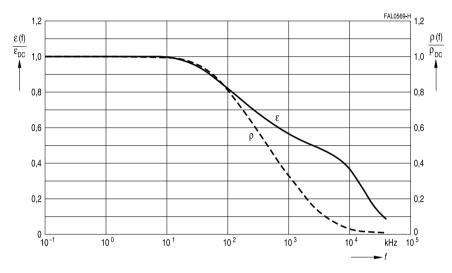


Figure 9
Resistivity and dielectric constant versus frequency

The different resistivity values for grain interior and grain boundary result in high (apparent) dielectric constants ϵ at low frequencies. The dielectric constant ϵ for all ferrites falls to values around 10 to 20 at very high frequencies. NiZn ferrites already reach this value range at frequencies around 100 kHz.

SIFFERIT material	Resistivity (approx.)	Dielectric constant ϵ at (approximate values)				
	Ωm	10 kHz	100 kHz	1 MHz	100 MHz	300 MHz
K1 (NiZn)	10 ⁵	30	15	12	11	11
N48 (MnZn)	1	140 · 10 ³	115 · 10 ³	80 · 10 ³		

Magnetostrictive effects are of significance principally when a coil is operated in the frequency range <20 kHz and then undesired audible frequency effects occur.

Definitions

9 Coil characteristics

Resistance factor AR

The resistance factor A_R , or A_R value, is the DC resistance R_{Cu} per unit turn, analogous to the A_L value.

$$A_{R} = \frac{R_{Cu}}{N^{2}}$$

When the A_R value and number of turns N are given, the DC resistance can be calculated from $R_{CU} = A_R \, N^2$.

From the winding data etc. the A_R value can be calculated as follows:

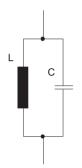
$$A_{R} = \frac{\rho \cdot I_{N}}{f_{CH} \cdot A_{N}}$$

where ρ = resistivity (for copper: 17.2 $\mu\Omega$ mm), I_N = average length of turn in mm, A_N = cross section of winding in mm², f_{Cu} = copper space factor. If these units are used in the equation, the A_R value is obtained in $\mu\Omega$ = 10-6 Ω . For calculation of I_N and A_N the middle dimensions are used.

For coil formers, A_R values are given in addition to A_N and I_N . They are based on a copper filling factor of f_{Cu} = 0.5. This permits the A_R value to be calculated for any filling factor f_{Cu} :

$$\mathsf{A}_{\mathsf{R}(\mathsf{f}_{\mathsf{C}\,\mathsf{u}})} \,=\, \mathsf{A}_{\mathsf{R}(0,\,5)} \cdot \frac{0.5}{\mathsf{f}_{\mathsf{C}\,\mathsf{u}}}$$

For rough estimation a copper filling factor of f_{Cu} = 0.5 is sufficient.



Application notes

Filter applications

1 Cores for filter applications

1.1 Gapped cores for filter/resonant circuits

Basic requirements:

- Low tan δ
- Close tolerance for A_I value
- Close tolerance for temperature coefficient
- Low disaccommodation factor DF
- Wide adjustment range

Gapped cores are therefore always used in high quality circuits (for materials see application survey, page 34).

In the case of small air gaps (max. 0.2 mm) the air gap can be ground into only one core half. In this case the half with the ground air gap bears the stamp. The other half is blank.

The air gap enables the losses in the small-signal area and the temperature coefficient to be reduced by a factor of μ_e/μ_i in the small-signal area. More important, however, is that close A_L value tolerances can be achieved.

The rated A_L values for cores with ground air gap can be obtained from the individual data sheets. The data for the individual cores also include the effective permeability μ_e used to approximately determine the effective loss factor $\tan \delta_e$ and the temperature coefficient of the effective permeability α_e from the ring core characteristics (see table of material properties).

It should be noted at this point that in cores with a larger air gap the stray field in the immediate vicinity of the air gap can cause additional eddy current losses in the copper winding. If the coil quality must meet stringent requirements, it is therefore advisable to wind several layers of polystyrene, nylon tape or even FPC film under the wire in the part of the winding that is in the proximity of the air gap; with a 3-section coil former this would be the part of the center section near the air gap.

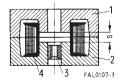


Figure 10

Schematic drawing showing the construction of a P or RM core set with a total air gap s, comprising 2 core halves (1 and 2), threaded part (3) and padded winding (4)

Application notes

Filter applications

1.2 P and RM cores with threaded sleeves

Most of P and RM cores are supplied with a glued-in threaded sleeve. EPCOS uses automatic machines featuring high reliability in dosing of the adhesive and in positioning the threaded sleeve in the core.

The tight fit of the threaded sleeve is regularly checked – including a humid atmosphere of 40 °C/93% r.h. (to IEC 60068-2-3-78) over 4 days – and also by periodic tests over 3 weeks. The usual bonding strengths of 20 N for \varnothing 2 mm holes (e.g. for RM 5) and 30 N for \varnothing 3 mm holes (e.g. for P 14 × 11, RM 6) are greatly exceeded, reaching an average of > 100 N. The threaded sleeve is continuously checked for proper centering. Overall, the controlled automated procedure guarantees higher reliability than manual gluing with its unavoidable inadequacies. Owing to the porosity of the ferrite, tension of the ferrite structure due to hardened adhesive that has penetrated cannot always be avoided. Hence, the relative temperature coefficient α_F may be increased by approximately $0.2 \cdot 10^{-6}$ /K.

1.3 Typical calculation of a resonant circuit inductor

The following example serves to illustrate the dependencies to be considered when designing a resonant circuit inductor:

A SIFERRIT pot core inductor is required with an inductance of L = 640 μ H and a minimum quality factor Q = 400 (tan δ_L = 1/Q = 2.5 \cdot 10⁻³) for a frequency of 500 kHz. The temperature coefficient α_e of this inductor should be 100 \cdot 10⁻⁶/K in the temperature range +5 to +55 °C.

a) Choice of material

According to the table of material properties and the tan δ/μ_i curves (see chapter "SIFERRIT materials") the material M33, for example, can be used for 500 kHz.

b) Choice of A_L value

The Q and temperature coefficient requirements demand a gapped pot core. The relative temperature coefficient α_F of SIFERRIT M33 according to the table of material properties is on average about 1,6 · 10-6/K. Since the required α_e value of the gapped P core should be about $100 \cdot 10^{-6}$ /K, the effective permeability is

$$\alpha_F = \frac{\alpha_e}{\mu_e} \qquad \Longrightarrow \qquad \mu_e = \frac{\alpha_e}{\alpha/\mu_i} = 100 \cdot 10^{-6}/K \cdot \frac{1}{1.6 \cdot 10^{-6}/K} = 62.5$$

With pot core P 18 × 11 (B65651): μ_e = 47.9 for A_L = 100 nH. With pot core P 22 × 13 (B65661): μ_e = 39.8 for A_L = 100 nH.

c) Choice of winding material

RF litz wire 20×0.05 with single natural silk covering is particularly suitable for frequencies around 500 kHz. The overall diameter of the wire including insulation of 0.367 mm and the average resistivity of $0.444~\Omega/m$ are obtained from the litz-wire table (refer to pertinent standard). It is recommended that the actual overall diameter always be measured, and this value used for the calculation.

Application notes

Filter applications

d) Number of turns and type of core

For an A_L value of 100 nH and an inductance of 640 μ H the equation N = $(L/A_L)^{1/2}$ yields 80 turns. The nomogram for coil formers on page 175 shows that for a wire with an external diameter of 0.367 mm the two-section coil former for core type P 18 \times 11 can easily take 80 turns. This core type can therefore be used with a one-section coil former.

e) Length of wire and DC resistance

The length of an average turn I_N on the above former is 35.6 mm. The length of litz wire necessary for the coil is therefore $80 \cdot 35.6$ mm = 2848 mm plus say $2 \cdot 10$ cm for the connections, giving a total length of 3.04 m. The average resistivity of this wire is 0.444 Ω/m ; the total DC resistance is thus 3.04 m \cdot 0,444 $\Omega/m \approx 1,35 \Omega$. It should be noted that the length of an average turn I_N given in the individual data sheets always refers to the fully wound former. If the former is not fully wound, the length of an average turn must be corrected according to the extent of the winding.

f) Checking the temperature coefficient

The core P 18 \times 11 with A_L = 100 nH has an effective permeability μ_e = 47.9. SIFERRIT M33 has a relative temperature coefficient $\alpha_F \approx 1.6 \cdot 10^{-6}$ /K; therefore the following temperature coefficient can be calculated

$$\alpha_{\text{p}} = \mu_{\text{p}} \cdot \alpha_{\text{F}} = 47.9 \cdot 1.6 \cdot 10^{-6} / \text{K} = 76.6 \cdot 10^{-6} / \text{K}$$

Actual measurement yielded 90 · 10-6/K.

It should be pointed out that with pot cores the temperature coefficient of the unwound coil has almost no influence since the flux density lies primarily in the core.

For effective permeabilities μ_{e} <80, however, due to the influence of the winding an additional temperature coefficient of approx. (10 to 30) \cdot 10-6/K must be included in the calculation.

Broadband transformers

2 Cores for broadband transformers

General requirements:

- High A_L values (

 high effective permeability) to restrict number of turns
- Good broadband properties, i.e. high impedance up to highest possible frequencies
- Low total harmonic distortion (

 low hysteresis material constant η_R)
- Low sensitivity to superimposed DC currents (\(\text{\tiket{\texi{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\texi}\text{\texi{\texi{\text{\texi{\texi{\text{\texi{\texi\texi{\texi{\texi\texi{\texi{\texi}\tiex{\tiint{\texi{\texi{\te
- Low tan δ for high-frequency applications

2.1 Precision-ground, ungapped cores for broadband transformers

For fields of application such as matching transformers in digital telecommunication networks or pulse signal transformers, either cores which form a closed magnetic circuit (toroids, double E or double-aperture cores) or paired core sets without air gap are used. In order to achieve the highest possible effective permeability here, these cores are precision ground with residual air gaps s \sim 1 μm . By selecting the low-profile core types, the A $_L$ value can be further increased, and the number of turns reduced.

For this reason, RM and pot cores made of materials N30, T38, T46 and T66 are especially suitable for these applications. For high-frequency applications, N22, M33 and K1 are suitable.

2.2 Fundamentals for broadband transformers in the range 10 kHz to over 1 GHz – an example

Broadband transformers are constructed primarily using closed core shapes, i.e. toroids and double-aperture cores. Divided core designs such as P/RM cores or small E/ER cores, which allow more simple winding, are particularly suitable for transformers up to approximately 200 MHz.

The bandwidth $\Delta f = f_{oG} - f_{uG}$ (f_{oG} = upper cut-off frequency, f_{uG} = lower cut-off frequency) is considered the most important transformer characteristic.

Cut-off frequency: Frequency at which the voltage at the transformer drops by 3 dB (≙ −30%)

The following holds true for circuit quality Q >10 (typical value):

$$\Delta f \,=\, \frac{f_r}{R_i} \cdot \sqrt{\frac{L_H}{C_0}}$$

f_r Resonance frequency

R_i Internal resistance of generator (normally, R_i << loss resistance of ferrite)

L_H Main inductance

C₀ Winding capacitance

Broadband transformers

Transmission loss curve:

$$\alpha = \ln \frac{U}{U_r}$$

U_r Voltage at f_r

α Attenuation when matched with line impedance (e.g. 50 Ω)

Example: 1:1 transformer based on E6.3/T38 with 2×10 turns

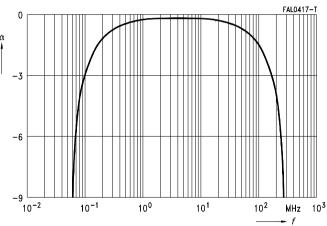


Figure 11 Transmission loss curve for transformer E6.3/T38 with 2×10 turns (parallel)

2.3 Low-distortion transformers for digital data transmission (ISDN, xDSL)

The digital transmission technologies over copper like ISDN, HDSL (high-rate digital subscriber line) and ADSL (asymmetric digital subscriber line) require very small harmonic distortion in order to maintain maximal line length. This requirement can be calculated from material parameters for the third harmonic distortion with the Rayleigh model for small-signal hysteresis (sinusoidal current).

$$k_3 = \frac{u_3}{u_1} = 0.6 \cdot \tan \delta_h = 0.6 \cdot \mu_e \cdot \eta_B \cdot \hat{B}$$

For a typical design a transformer has to be matched to a chipset via the turn ratios N1 : N2 : N3 ..., the inductances L_1 , L_2 , L_3 ... and the maximum DC resistances R_1 , R_2 , R_3 ...

Broadband transformers

The third harmonic distortion for winding j can then be calculated as

$$k_3 = \underbrace{\frac{0.6}{\mu_0}} \cdot \underbrace{\frac{1}{\mu_B}}_{\text{Material}} \cdot \underbrace{\frac{\hat{U}}{2\pi f}}_{\text{Circuit}} \cdot \underbrace{L_j \cdot \left[\frac{\rho}{f_{Cu}} \sum_{j=1}^{} \left(\frac{N_j}{N_1}\right)^2 \cdot \frac{1}{R_j}\right]^{3/2}}_{\text{Design constraints}} \cdot \underbrace{\frac{\sum_{j=1}^{l_j} l_j}{l_e} \cdot \frac{l_e}{A_e^2}}_{\text{Core}} \cdot \underbrace{\frac{l_N^{3/2}}{A_N^{3/2}}}_{\text{Coil former Geometry}}$$

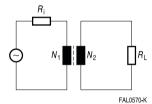
This equation shows the contribution of the various design parameters:

- The material is characterized by the hysteresis material constant $η_B$. Limit values for this parameter are given in the SIFERRIT material tables. The actual level for $η_B$ varies for different cores. In order to select the best material for an application, the normalized temperature dependence $η_B(T)/η_B(25~^\circ\text{C})$ is of great help (cf. graph on page 50). Being mainly composition-dependent, these curves are thus material-specific.
- The geometry can be taken into account by a core distortion factor (CDF) defined as

$$\text{CDF} = \frac{\sum_{i}^{l_{i}}}{l_{e}} \cdot \frac{l_{e}}{{A_{e}}^{2}} \cdot \frac{{l_{N}}^{3/2}}{{A_{N}}^{3/2}}$$

The factor $\Sigma I_i/I_e$ is the closer to 1, the less the core section varies along the magnetic path (homogeneous core shape). The values for CDF are given in the following table for the core shapes preferred for these applications.

Cores w/o hole	CDF (mm -4.5)	Cores w. hole	CDF (mm -4.5)	EP cores	CDF (mm ^{-4.5})
P 9 × 5	1.25	P 3.3 × 2.6	85.9	EP 5	10.6
P 11 × 7	0.644	P 4.6 × 4.1	46.7	EP 6	9.99
P 14 × 8	0.164	P 7 × 4	4.21	EP 7	1.68
P 18 × 11	0.0470	P 9 × 5	1.72	EPX 7/9	0.749
P 22 × 13	0.0171	P 11 × 7	0.790	EPX 9/9	0.457
P 26 × 16	0.00723	P 14 × 8	0.217	EP 10	0.506
P 30 × 19	0.00311	P 18 × 11	0.0545	EPX 10	0.329
P 36 × 22	0.00149	P 22 × 13	0.0220	EP 13	0.191
RM 4	0.498	P 26 × 16	0.0099	EPO 13	0.172
RM 5	0.184	P 30 × 19	0.00366	EP 17	0.0619
RM 6	0.0576	P 36 × 22	0.00166	EP 20	0.00945
RM 7	0.0339	P 41 × 25	0.00112	EFD 10	3.919
RM 8	0.0162	RM 4	0.814	EFD 15	0.376
RM 10	0.00676	RM 5	0.243	EFD 20	0.0837
RM 12	0.00215	RM 6	0.0779	EFD 25	0.0231
RM 14	0.00100	RM 7	0.0415	EFD 30	0.0161
		RM 8	0.0235	ER 9.5	2.557
		RM 10	0.00906	ER 11	1.453


Broadband transformers

The values of this parameter indicate that roughly

$$\text{CDF} \sim \frac{1}{V_e^{3/2}}$$

I.e. the larger the core, the smaller is the distortion. Due to space restriction, however, the choice has to be made among the core shapes of a given size.

- The circuit conditions, i.e. voltage amplitude \hat{u} and frequency f affect directly the flux density in the core. For increasing flux density, a deviation of the absolute value of k_3 from the calculated test value is expected, since the tan δ_h vs. \hat{B} curve deviates from linear.
- The distortion k_{3c} for a transformer in a circuit with given impedance conditions can be obtained from the following formula:

 $k_{3c} = \frac{k_3}{\sqrt{1 + \left[3\omega L_1 \cdot \left(\frac{1}{R_i} + \left(\frac{N_2}{N_1}\right)^2 \cdot \frac{1}{R_L}\right)\right]^2}}$

Figure 12

Equivalent circuit diagram for a broadband transformer

R_i Internal resistance of generator

R_L Load resistance

L₁ Primary inductance

The actual circuit distortion k_{3c} will in general be smaller than the calculated sinusoidal current value k_3 .

LAN applications

3 Cores for LAN applications

LAN (Local Area Network) is a connection of local computers in most cases inside a building. The transfer rate values between 10 Mbit/s and 100 Mbit/s. The transmission rates are 10 Mbit/s (10 Base T), 100 Mbit/s (100 Base T) and 1 Gbit/s (Gigabit Ethernet).

3.1 Signal transformers

To design the signal 1:1 transformer small toroids are typically used. Its functions are impedance matching and network termination. Due to space restriction the core has to be the smallest possible, that still meets the inductance requirement under the given working conditions (100 kHz).

The mostly used core sizes are beginning from outer/inner diameters of 2.54/1.27 mm (0.1/0.05 inch) up to 3.94/2.24 mm (0.155/0.088 inch) with different variations of inner diameter and core height (refer also to chapter "Toroids", page 561 ff).

The multi-level coding of the digital waveform is not always symmetrical to the zero line. This imbalance results in an effective DC current, which is allowed to value 8 mA max. Therefore the inductance of the ferrite toroid is specified under a constant DC current of 8 mA. The saturation flux density values 430 mT at 25 °C and the initial permeability is 4000 (figure 13).

For indoor application the temperature range is 0 to 70 °C. To use the LAN technology also in outdoor application the temperature range needs to be extended from –40 to +85 °C without changing the electrical specification.

The material T57 enables design in both temperature ranges.

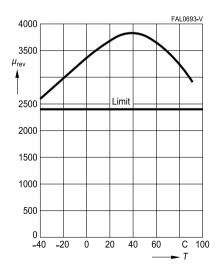


Figure 13

 μ_{rev} versus temperature, measured on toroid R 3.43/1.78/2.11; material T57 f = 100 kHz, \hat{B} = 6 mT, N = 26, H_{DC} = 27 A/m. (I_{DC} = 8 mA)

LAN applications

3.2 Common-mode chokes

For the suppression of common-mode interference in the frequency range from about 30 MHz to 300 MHz it is necessary to use current-compensated chokes in the LAN network.

The corresponding ferrite material is K10, which is a NiZn material with a permeability of approx. 700 for small Parylene coated cores. The impedance versus frequency curve of K10 is ideally adapted to the suppression requirement in the LAN network (figure 14).

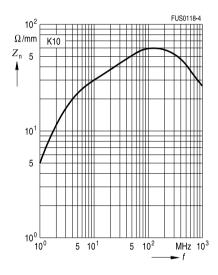


Figure 14
Normalized impedance curve, measured on toroid R 10 (N = 2 turns)

3.3 Coating to ensure highest insulation resistance

Typically the toroid has to withstand 1 kV Hipot test. Therefore the toroids needs to be coated with Parylene which ensures highest insulation resistance. With 12.5 μ m (0.0005 inch) a breakdown voltage of 2.7 kV can be achieved. The coating will also protect the wire during winding operation. The material data sheet specifies a breakdown voltage of 2.7 kV, if coated 12.5 μ m.

EMI applications

4 Cores for EMI applications

4.1 Ring cores to suppress line interference

With the ever-increasing use of electrical and electronic equipment, it becomes increasingly important to be able to ensure that all facilities will operate simultaneously in the context of electromagnetic compatibility (EMC) without interfering with each others' respective functions. The EMC legislation which came into force at the beginning of 1996 applies to all electrical and electronic products marketed in the EU, both new and existing ones. So the latter may have to be modified so that they are neither susceptible to electromagnetic interference, nor emit spurious radiation. Ferrite cores are ideally suited for this purpose since they are able to suppress interference over a wide frequency range.

At frequencies above 1 MHz, ferrite rings slipped over a conductor lead to an increase in the impedance of this conductor. The real component of this impedance absorbs the interference energy.

A ferrite material's suitability for suppressing interference within a specific frequency spectrum depends on its magnetic properties, which vary with frequency. Before the right material can be selected, the impedance IZI must be known as a function of frequency.

The curve of impedance as a function of frequency is characterized by the sharp increase in loss at resonance frequency.

Measurement results:

The measurements shown here were made at room temperature (25 \pm 3) °C using an HP 4191A RF impedance analyzer with a flux density of \hat{B} \leq 1 mT.

The maximum of the impedance curve shifts to lower frequencies as the number of turns increases; this is due to the capacitive effect of the turns (figure 15, using R 25/15 as an example).

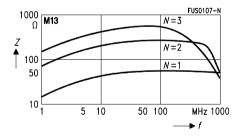
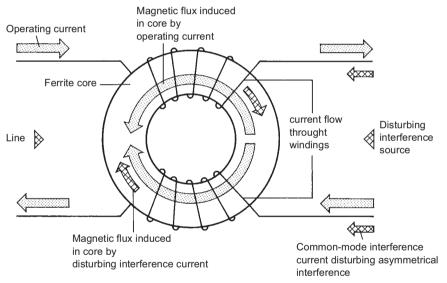


Figure 15
Impedance characteristic curve

The impedance curves of different materials are summarized on page 51 for direct comparison. The normalized impedance IZI $_{\rm I}$ = IZI / N 2 x Σ (I $_{\rm e}$ /A $_{\rm e}$) were used to display material properties only. The geometry factor was calculated on the basis of the core dimensions.

These normalized impedance curves are guide values, mostly measured using toroidal core R 10 with a number of turns N = 1 (wire diameter 0.7 mm); they may vary slightly, depending on the geometry.



EMI applications

4.2 Common-mode chokes

Compact electrical and electronic equipment primarily generates common-mode interference. In order to be able to meet the safety requirements (keeping within the leakage current limits), chokes with a high asymmetrically effective inductance must be used. Current-compensated chokes with a closed core topology are especially suitable for this purpose. The problem of core material saturation due to the useful current is solved in these designs by winding two coils with equal number of turns on the core. These coils are connected in such a way that the magnetic flux induced by the upper coil is compensated by the lower coil.

The new Magnetic Design Tool of EPCOS contains the normalized impedance versus frequency curves of all ferrite materials, which are suitable for EMI applications.

SSB0554-A

Figure 16
Current-compensated toroid choke; double choke shown as an example

4.3 NiZn ferrites

Toroidal cores of NiZn ferrites are especially suitable for the suppression of high frequency interference, because of the high ohmic resistance of these materials (ca. $10^5~\Omega m$). Therefore the negative effect of eddy current is negligible and the usage of these materials allow relatively high impedance values even at frequency well above 100 MHz. There is limiting factor to create NiZn ferrites with higher initial permeability, because with increasing permeability the Curie temperature decreases. For example the Curie temperature for a NiZn ferrite of μ_i = 2300 (M13) is specified >105 °C, which is at the limit for many applications.

EMI applications

An applicacion example in the automotive sector is the CAN bus choke, where core sizes from outer diameter 2.5 mm to 6.3 mm (0.1 to 0.29 inch) in material K8 and K10 are used. As the transmission frequencies in the telecom industry are rising, it is also expected, that the demand for NiZn ferrites will grow.

Another application example for NiZn ferrite toroids is the usage of cores alone on component leads or in board level circuitry either

- to prevent any parasitic oscillations or
- to attenuate unwanted signal pickup or transmissions which might travel along component leads or interconnecting wires, traces, or cables.

4.4 MnZn ferrites

For the application as current-compensated chokes MnZn ferrites are widely used in the whole range of sizes. The advantage of the MnZn materials is the much higher permeability, which can be realised together with a sufficiently high Curie temperature. Using very high permeability ferrites reduces the number of turns, which are necessary to reach a certain inductance. This avoids the negative impact of a high number of turns like DC resistance or parasitic capacitance and not at least costs.

Small cores R 2.5 up to R 12.5 in the materials N30, T38, T46 can be used for example in Telecom networks like ISDN.

Cores of mid range sizes from R 13.3 to R 26 are used as choke in power lines usually in electronic ballasts in lamps, switch-mode power supplies in TV sets, washing machines and chargers. Ferrite materials: N30, T65, T35, T37, T38 and T46.

The usage for core sizes R 34 and bigger are in industrial applications, in filters for frequency converters (lifts, pumps, traction systems, conveyer systems, air conditioning systems), general-purpose application in power electronics, UPS and wind-driven power plants. Especially for high temperarure or/and high current application in these fields our material T65 is the most suitable because of its high saturation flux density of 460 mT and high Curie temperature of >160 °C. The initial permeability on big cores is about 4500 to 5000.

If there is not especially high current or high temperature applied, we recommend to use our materials N30 (μ_i = 4300) and T37 (μ_i approx. 5500 to 6000 on big cores). The choice of material depends on the frequency range, which has to be covered by the attenuation. This is determined by the characteristic of permeability.

Inductive sensors

5 Cores for inductive sensors

The proximity switch, widely used in automation engineering, is based on the damping of a high-frequency LC oscillator by the approach of a metal. The oscillator inductor consists of a cylindrical coil and a ferrite core half whose open side forms what is known as the active area. The function of the ferrite core consists in spatially aligning the magnetic field so as to restrict the interaction area.

The oscillator design must take into account that the inductor forms a magnetically open circuit. The inductance and quality are decisively dependent on the coil design, unlike in the case of closed circuits. The initial permeability plays a subordinate role here, as is shown by the following example:

Core: P 9 × 5 (B65517D*)
Coil: 100 turns. 0.08 CuL

Current: 1 mA Frequency: 100 kHz

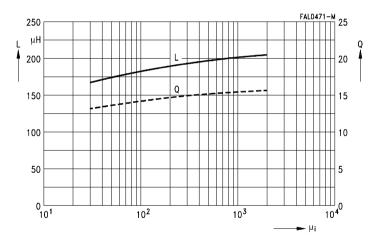


Figure 17 Inductance and quality versus initial permeability P 9.3×2.7 , N = 100, f = 100 kHz, I = 1 mA

Decisive for this application is the attainment of as high a Q as possible, with the lowest possible dependence on temperature at the oscillator frequency. When the distance between the damping lug and the active area changes, the oscillator Q should however change as strongly as possible.

If the relative change in Q Δ Q/Q exceeds a predefined threshold, e.g. 10%, a switching operation is initiated at the so-called operating distance. Attainment of the target values depends on appropriate coil dimensioning and can generally only be performed empirically.

Power applications

6 Cores for power applications

6.1 Core shapes and materials

The enormously increased diversity of application in power electronics has led to a considerable expansion not only in the spectrum of core shapes but also in the range of materials.

To satisfy the demands of higher-frequency applications, the EFD cores have been developed in sizes EFD 10, 15, 20, 25 and EFD 30. These are characterized by an extremely flat design, optimized cross-sectional distribution and optimized winding shielding.

For many standard applications up to 100 kHz, materials N27, N41 and N72 can be used. For the range up to 500 kHz, materials N92, N87 and N97 are suitable. N49 covers the range from 300 kHz to 1 MHz e.g. for DC/DC (resonance) converters.

For detailed information on core shapes see the individual data sheets, for general information on materials see the chapter on SIFERRIT materials.

6.2 Low-profile cores for planar magnetics

The design of planar devices has attracted the attention of magnetic design engineers, since this type of devices has interesting advantages over conventional wound components (cf. figure 18):

- Low total height
- Outstanding reproducibility of electrical parameters
- Excellent thermal performance
- High degree of integration

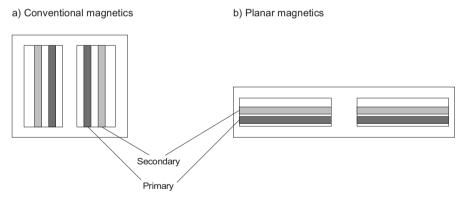


Figure 18
Principle of conventional and planar magnetics

In order to fulfill the requirements of this technology, suitable cores are needed. The most common designs of low-profile cores have been adopted in the IEC standards IEC 62317-4 for RM LP cores and IEC 62317-9 for ELP, EQ and ER planar cores to offer geometrically compatible cores for this application. A common denominator of these cores is that the length of the core is larger than both its total height and its width.

Power applications

The advantages of this core design are:

- High A_I values
- High core surface to volume ratio
- Large core surface to contact heat sink

The preferred materials used in combination with low-profile cores are N87, N97, N92 and N49 for power applications as well as T38 and T46 for applications requiring high inductance values.

6.3 Correlation: Applications – core shape/material

6.3.1 Step-down converters

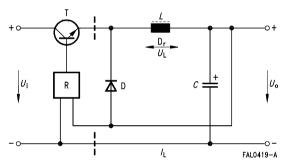


Figure 19 Typical circuit diagram

Advantages

- Only one choke required
- High efficiency
- Low radio interference

Disadvantages

- Only one output voltage
- Restricted short-circuit withstand capability (no line isolation)

Application areas

- Providing a constant output voltage, isolated from input voltage
- Regulation in a forward converter
- Regulated voltage inversion
- Sinusoidal line current draw

Core/material requirements

Standard requirements regarding losses and saturation

EPCOS recommendations for core shape/material

■ E/ETD/U/RM cores made of N27 (standard) N87, N97 (low losses, high saturation) N92 (very high saturation)

Power applications

6.3.2 Single-ended flyback converter

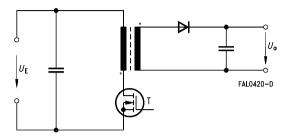


Figure 20 Typical circuit diagram

Advantages

- Simple circuit variant (low cost)
- Low component requirement
- Only one inductive component
- Low leakage losses
- Several easily regulatable output voltages

Disadvantages

- Close coupling of primary and secondary sides
- High eddy current losses in the air gap area
- Large transformer core with air gap restricts possible applications
- Average radio interference
- Exacting requirements on the components

Application areas

- Low and medium powers up to max. 200 W with wide output voltage range
- Maximum operating frequency approx. 100 kHz

Core/material requirements

- Low power losses at high temperature
- Very high saturation with low dependence on temperature
- Gapped cores (recently also with A₁ value guarantee)

EPCOS recommendations for core shape/material

E/U cores in N27 (standard) N87, N92 (low losses, high saturation)

Power applications

6.3.3 Single-ended forward converter

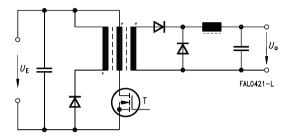


Figure 21 Typical circuit diagram

Advantages

- Higher power range than flyback converter
- Lower demands on circuit components
- High efficiency

Disadvantages

- 2 inductive components
- Large choke
- Demagnetization winding
- High radio interference suppression complexity
- Increased component requirement, particularly with several regulated output voltages

Application areas

- Medium and high powers (up to 500 W) especially in the area of low output voltages
- PWM (pulse width) modulation up to approx. 500 kHz

Core/material requirements

- Low losses at high temperatures and at high frequencies (low eddy-current losses)
- Generally, ungapped cores

EPCOS recommendations for core shape/material

■ E/ETD, small EFD cores, RM/PM cores made of N27, N41 (up to 100 kHz)
N87, N97 (up to 500 kHz)
N49 (up to 1 MHz)

Power applications

6.3.4 Push-pull converter

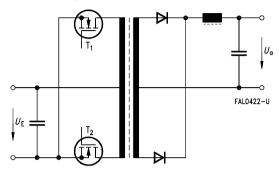


Figure 22 Typical circuit diagram

Advantages

- Powers up to the kW range
- Small choke
- High efficiency
- Low radio interference suppression complexity

Disadvantages

- 2 inductive components
- Complex winding
- High component requirement, particularly with several regulated output voltages

Application areas

- High powers (»100 W), also at high output voltages
- PWM (pulse width) modulation up to 500 kHz

Core/material requirements

- Low losses at high temperatures
- Low eddy-current losses since application areas is up to 500 kHz and above
- Generally, ungapped cores

EPCOS recommendations for core shape/material

■ Large E/ETD, RM/PM cores made of N27, N97, N87 (with large core cross sections (A_e ≥250 mm²), on account of eddy-current losses N87 must be used even where f <100 kHz)</p>

Power applications

6.3.5 Electronic lamp ballast device

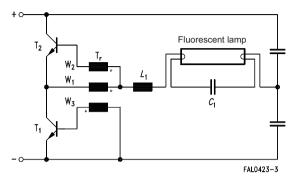


Figure 23 Typical circuit diagram

Advantages

- Considerably reduced size compared to 50 Hz line solution
- Significantly higher efficiency than line voltage regulator

Disadvantages

■ High component requirement

Application areas

Control unit for fluorescent lamps

Core/material requirements

- Low losses in the range 50 to 80 °C
- Pulse power requirements
- Gapped and ungapped E cores
- Ring cores with defined pulse characteristic

EPCOS recommendations for core shape/material

■ E/ETD/EFD cores made of N72 for L₁

Power applications

6.4 Selection of switch-mode power supply transformer cores

The previous section (Correlation: Applications – core shape/material) provides a guide for the rough selection of core shape and material.

The following procedure should be followed when selecting the actual core size and material:

- 1) Definition of requirements
 - Range of power capacities P_{trans}
 - Specification of the SMPS type
 - Specification of pulse frequency and maximum temperature rise
 - Specification of the maximum volume
- 2) Selection of "possible" core shapes/materials on the basis of the "Power capacity" tables starting on page 163.

These tables associate core shape/material combinations (and the volume V) with the power capacity of the different converter types at a "typical" frequency f_{typ} and a "cut-off frequency" f_{cutoff} .

The typical frequency specified here is a frequency for which specific applications are known, or which serves as the base frequency for the specified core loss values.

The cut-off frequency is selected such that the advantages of other materials predominate above this frequency and that it is therefore advisable to switch to a different material which is better optimized for this range.

3) Final selection of core shape/material

The core shapes/materials selected as possibilities under 2) must now be compared with the relevant data sheets for the specific core types and the material data (typical curves), taking the following points into consideration:

- Volume
- Accessories (power coil former)
- AL values of ungapped core
- A_I values/air gap specifications
- Temperature minimum for losses, Curie temperature T_C, saturation magnetization B_S, magnetic bias characteristic, amplitude permeability characteristic

Core shape/material combinations which are not contained in the individual data sheets can be requested from EPCOS.

6.5 Selection tables: Power capacities

In order to calculate the transmissible power, the following relationship is used (transformer with two equal windings):

$$P_{trans} = C \Delta B f A_e \cdot A_N \cdot j$$

where C is a coefficient characterizing the converter topolgy¹⁾, i.e.

C = 1: push-pull converter C = 0.71: single-ended converter C = 0.62: flyback converter

¹⁾ G. Roespel, "Effect of the magnetic material on the shape and dimensions of transformers and chokes in switched-mode power supplies", J. of Magn. and Magn. Materials 9 (1978) 145-49

Power applications

Both the core losses associated with the flux swing ΔB and the copper losses due to the current density j result in a temperature increase ΔT . Assuming that both loss contributions are equal and that $P_v \sim B^2$, the power capacity can be approximated by

$$P_{trans} \approx C \cdot \underbrace{\frac{PF}{\sqrt{P_V}}}_{Material} \cdot \underbrace{\frac{\Delta T}{R_{th}}}_{Thermal} \cdot \underbrace{\sqrt{\frac{f_{Cu}}{\rho_{Cu}}}}_{Winding} \cdot \underbrace{\sqrt{\frac{A_N \cdot A_e}{I_N \cdot I_e}}}_{Geometry}$$

The equation shows how the different aspects in the design contribute to the power capacity:

- The material term is the performance factor PF divided by the square root of the specific core loss level for which it was derived (cf. page 49 and page 132). For a given core shape deviations from this value are possible as given by its data sheet.
- The values for ΔT are associated with the material according to the following table.

	ΔT
	K
N27	30
N41	30
N49	20
N51	10
N72	40
N87	50
N88	90
N92	50
N95	50
N96	30
N97	50
PC47	60

- The thermal resistance is defined as

$$R_{th} = \frac{\Delta T}{P_{Vcore} + P_{Vcopper}}$$

- These values should be regarded as typical for a given core shape. They were determined by measurement under the condition of free convection in air and are given in the table on page 168 ff.
 - For actual designs the actual values for R_{th} should be determined and the tabulated P_{trans} values (cf. page 167 ff) adjusted accordingly.
- The winding design was taken into account in the calcualtions by f_{Cu} = 0.4 and ρ_{Cu} for DC. In actual design large deviations of the DC resistance due to high frequency effects (skin effect, proximity effect) occur, unless special wire types such as litz wires are used. If the R_{AC}/R_{DC} ratio for a given winding is known, this can be used to correct the tabulated power capacities accordingly.

Power applications

The geometry term is related to the core shape and size. However, note that the thermal resistance is also size-dependent via the empirical relation (cf. figure 24):

$$R_{th} \sim \frac{1}{\sqrt{V_e}}$$

The tabulated power capacities provide a means for making a selection among cores, although the absolute values will not be met in practice for the reasons explained before.

In the calculation of power capacities the following conditions were also applied:

- The application area for flyback converters was restricted to f <150 kHz.
- The power specifications for N49 should be read as applicable to DC/DC (quasi) resonance converters (single-ended forward operation).
- The maximum flux densities were defined as follows:
 For flyback converters: ΔB ≤200 mT (ΔB ≤50 mT for material N49)
 For push-pull converters: ΔB ≤400 mT.

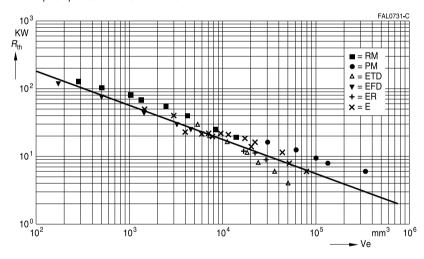


Figure 24
Thermal resistance versus core effective volume

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

	N27	N41	N49	N72	N87	N92	N95	N97
f _{typ} [kHz]	25	25	500	25	100	100	100	100
RM 4 LP			19		20	18		
RM 4			22		24			31
RM 5 LP			29		35	32		
RM 5		9	38		48			61
RM 6 LP			45		56	51		
RM 6		17	64		79			101
RM 7 LP			67		82	75		
RM 7		23	86		107			137
RM 8 LP			97		121	111		
RM 8		35	131		162			207
RM 10 LP			173		214	196		
RM 10		63	234		289			370
RM 12 LP			366		453	416		
RM 12		136	503		622			796
RM 14 LP			611		756	694		
RM 14		229	846		1046			1339
PQ 16.11			47		42	39	45	48
PQ 20/16			105		95	88	102	107
PQ 20/20			127		115	107	123	130
PQ 26/20			207		187	174	201	211
PQ 26/25			256		231	215	248	260
PQ 32/20			290		262	244	281	296
PQ 32/30			437		395	367	424	445
PQ 35/35			594		537	500	576	606
PQ 40/30			613		554	515	595	625
PQ 40/40			804		726	676	780	819
PQ 50/40			1244		1124	1046	1207	1267
PQ 50/50			1468		1326	1234	1424	1496
PM 50/39	391				1742			
PM 62/49	673				2999			
PM 74/59	1131				5036			
PM 87/70	1567				6982			
PM 114/93	2963				13196			

Power applications

P_{trans} of cores for wound transformers (f_{Cu} = 0.4)

				,				
	N27	N41	N49	N72	N87	N92	N95	N97
f _{typ} [kHz]	25	25	500	25	100	100	100	100
EP 5					2.6			
EP 6					2.7			
EP 7					13			
EP 10					25			
EP 13					55			
EP 17					114			
EP 20					329			
P 9 × 5					14			
P 11 × 7					25			
P 14 × 8		12			62			
P 18 × 11					133			
P 22 × 13					232			
P 26 × 16					394			
P 30 × 19					613			
E 5					1.7			
E 6.3					2.4			
E 8.8					5.0			
E 10/5.5/5	14				30			
E 13/7/4	5				28			
E 14/8/4	7	13						
E 16/6/5	9				45			
E 16/8/5	13	13.2			67			
E 19/8/5	16				82			
E 20/10/6	26				118			
E 21/9/5	15							
E 25/13/7	49				218			
E 25.4/10/7	42				189			
E 30/15/7	94				418			
E 32/16/9	118				525			
E 32/16/11					566			
E 34/14/9	118				530			
E 36/18/11	146				652			
E 40/16/12	172			574	768			

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

	N27	N41	N49	N72	N87	N92	N95	N97
f _{typ} [kHz]	25	25	500	25	100	100	100	100
E 42/21/15	214				952		993	
E 42/21/20	289				1290		1332	
E 47/20/16	304				1350			
E 55/28/21	538				2396			
E 55/28/25	763				3400			
E 56/24/19	532				1167			
E 65/32/27	1091				4860			
E 70/33/32	1453				6500			
E 80/38/20	1503				6700			
EEQ 13/2.85			49		43	42		48
EIQ 13/3.85			28		25	24		28
EEQ 20/6.3			212		202	196		220
EIQ 20/8.6			145		137	132		145
EEQ 25/8			294		286	278		310
EIQ 25/7.9			182		175	169		190
EEQ 30/8			503		501	486		540
EIQ 30/10.7			360		351	340		380
ER 9,5					9			
ER 11/5			15		14			
ER 14,5/6			15		12	11		12.5
ER 18/3/10			75		69	66		76
EER 23/5/13			177		167	162	171	183
EIR 23/7/13			111		105	101		114
ER 25/6/15			247		238	230		258
ER 25/9/15			155		147	143		161
ER 28/17/11				290				
ER 32/5/21			387		381	370		412
ER 35/20/11	309				1388			
ER 42/22/15	384				1725			
ER 46/17/18	376							
ER 49/27/17	636							
ER 54/18/18	482				2168			

Power applications

P_{trans} of cores for wound transformers ($f_{Cu} = 0.4$)

	N27	N41	N49	N72	N87	N92	N95	N97
f [LU¬]		25	500	25	100	100	100	100
f _{typ} [kHz]	25	25	500	25		100	100	
ETD 29/16/10	96				428			548
ETD 34/17/11	151				674			863
ETD 39/20/13	230				1023			1309
ETD 44/22/15	383				1708			2186
ETD 49/25/16	594				2645			3385
ETD 54/28/19	897				3998			5116
ETD 59/31/22	1502				6692			8564
EFD 10/5/3			13		12			12.5
EFD 15/8/5			38		42			44
EFD 20/10/7			93		115			119
EFD 25/13/9					245			266
EFD 30/15/9			258		319			345
EV 15/9/7	175				231			252
EV 25/13/13	316				685			750
EV 30/16/13	482				1050			1140
UI 93/104/16	1028				4600			
UU 93/152/16	1413				6350			
UI 93/104/20	1283				5750			
UU 93/152/20	1780				8000			
UI 93/104/30	1784				7950			
UU 93/152/30	2874				12800			
U 101/76/30	4400				19750			
UU 126/182/20					16150			
UI 126/119/20					10850			
U 141/78/30	4300				19300			

Power applications

P_{trans} of low-profile cores for planar transformers (f_{Cu} = 0.1)

	N 49	N 87	N 92	N 95	N 97
f _{typ} [kHz]	500	100	100	100	100
RM 4 LP	9.5	10			
RM 5 LP	14	17.5			
RM 6 LP	22	28			
RM 7 LP	33	41			
RM 8 LP	48	60			
RM 10 LP	86	107			
RM 12 LP	183	226			
RM 14 LP	305	378			
ER 9.5		4.5			
ER 11/5	7.5	7			
ER 14.5/6	13	12	11		12
EILP 14	12	11	10		10
EELP 14	16	17	16	18.5	16
EILP 18	30	37	34		36
EELP 18	44	55	50		59
EILP 22	78	96	88		105
EELP 22	109	134	123		146
EILP 32	143	177	171	186	192
EELP 32	203	252	244	261	274
EILP 38	262	323	313		352
EELP 38	380	470	454		510
EILP 43	360	445	430		482
EELP 43	500	619	599	666	672
EILP 58		731			
EELP 58		1046			
EILP 64	800	991			
EELP 64	1130	1397			

Power applications

6.6 Thermal resistance for the main power transformer core shapes

Core shapes	R _{th} (K/W)	Core shapes	R _{th} (K/W)	Core shapes	R _{th} (K/W)
RM 4	120	P 11 × 7	106	EI LP 64	9,5
RM 4 LP	135	P 14 × 8	73	EE LP 64	9
RM 5	100	P 18 × 11	51	EE LP 32	24
RM 5 LP	111	P 22 × 13	37	EI LP 38	20
RM 6	80	P 26 × 16	27	EE LP 38	18
RM 6 LP	90	P 30 × 19	22	EI LP 43	16
RM 7	68	P 36 × 22	17	EE LP 43	15
RM 7 LP	78	E 5	308	EI LP 58	12
RM 8	57	E 6,3	283	EE LP 58	11
RM 8 LP	65	E 8.8	204	ER 9.5	164
RM 10	40	E 13/7/4	94	ER 11/5	134
RM 10 LP	45	E 14/8/4	79	ER 14.5/6	99
RM 12	25	E 16/6/5	76	ER 28/17/11	22
RM 12 LP	29	E 16/8/5	65	ER 35/20/11	18
RM 14	18	E 19/8/5	60	ER 42/22/15	14
RM 14 LP	21	E 20/10/6	46	ER 46/17/18	13
PQ 16/11.6	77	E 21/9/5	59	ER 49/27/17	9
PQ 20/16	51	E 25/13/7	40	ER 54/18/18	11
PQ 20/20	46	E 25.4/10/7	41	ETD 29/16/10	28
PQ 26/20	32	E 30/15/7	23	ETD 34/17/11	20
PQ 26/25	29	E 32/16/9	22	ETD 39/20/13	16
PQ 32/20	27	E 32/16/11	21	ETD 44/22/15	11
PQ 32/30	22	E 34/14/9	23	ETD 49/25/16	8
PQ 35/35	19	E 36/18/11	18	ETD 54/28/19	6
PQ 40/30	19	E 40/16/12	20	ETD 59/31/22	4
PQ 40/40	16	E 42/21/15	19	EFD 10/5/3	120
PQ 50/40	12	E 42/21/20	15	EFD 15/8/5	75
PQ 50/50	11	E 47/20/16	13	EFD 20/10/7	45
PM 50/39	15	E 55/28/21	11	EFD 25/13/9	30
PM 62/49	12	E 55/28/25	8	EFD 30/15/9	25
PM 74/59	9,5	E 56/24/19	9.5	EV 15/9/7	55
PM 87/70	8	E 65/32/27	6.5	EV 25/13/13	27
PM 114/93	6	E 70/33/32	5.5	EV 30/16/13	21
EP 5	329	E 80/38/20	7	UU 93/152/16	4.5
EP 6	318	EI LP 14	116	UI 93/104/16	5
EP 7	141	EE LP 14	105	UU 93/152/20	4
EP 10	122	EI LP 18	61	UI 93/104/20	4.5
EP 13	82	EE LP 18	56	UU 93/152/30	3
EP 17	58	EI LP 22	38	UI 93/104/30	4
EP 20	32	EE LP 22	35	U 101/76/30	3.3
P 9 × 5	142	EI LP 32	26	U 141/78/30	2.5

1 Gapped and ungapped ferrite cores

Even with the best grinding methods known today, a certain degree of roughness on ground surfaces cannot be avoided, so that the usual term "without air gap" or "ungapped" does not imply no air gap at all. The A_L values quoted allow for a certain amount of roughness of the ground faces. The tolerance of the A_L value for ungapped cores is -20 to +30% or -30 to +40%. Closer tolerances are not available for several reasons. The spread in the A_L values of ungapped cores practically equal the spread in ring core permeability ($\pm20\%$... $\pm30\%$), and the A_L value largely depends on the grinding quality of the matching surfaces.

The following are normally defined:

precision-ground/lapped cores $s_{resid} \approx 1 \ \mu m$ normally ground cores $s_{resid} \approx 10 \ \mu m$ gapped cores $s \geq 10 \ \mu m$

The residual air gap s_{resid} here is the total of the residual air gaps at the leg or centerpost contact surfaces.

With increasing material permeability the influence of the inevitable residual air gap grows larger. The spreads in the A_L value may also be increased by the mode of core assembly. Effects of mounting and gluing can result in a reduction of the A_L value. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement (it is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L).

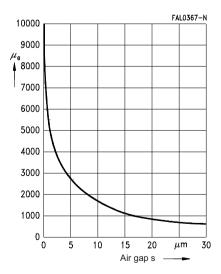


Figure 25 Relationship between permeability μ_{e} and air gap s for an RM 4/T38 ferrite core

2 Processing notes for the manufacture of wound products for small-signal and power applications

2.1 Winding design

For the most common core types the maximum number of turns for the individual coil formers can be seen from the following nomograms. The curves have been derived from the equation

$$N = \frac{A_N}{A_{wire}} \cdot f_{Cu}$$

where

N Max. number of turns

A_N Winding cross section in mm² A_{wire} Wire cross section in mm²

f_{Cu} Copper space factor versus wire diameter

(f_{CII} approx. 0.55 for wire diameter 0.05)

Common wires and litz wires are specified in the pertinent standards (IEC 60317).

As can be seen from Figure 26, as high a winding level as possible should be employed because at low μ_e values in particular a low winding level (h/H ratio) can cause an A_L drop of up to 10% compared to the maximum value with full winding. (By our standards, the A_L values are always related to fully wound 100-turn coils.)

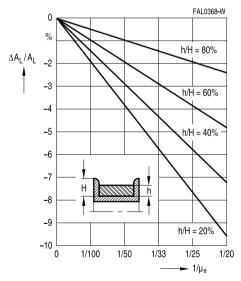
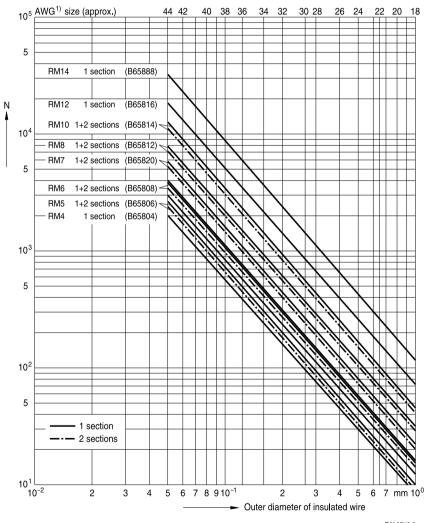
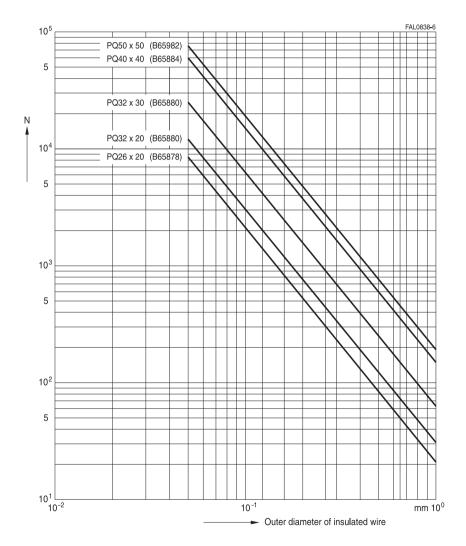



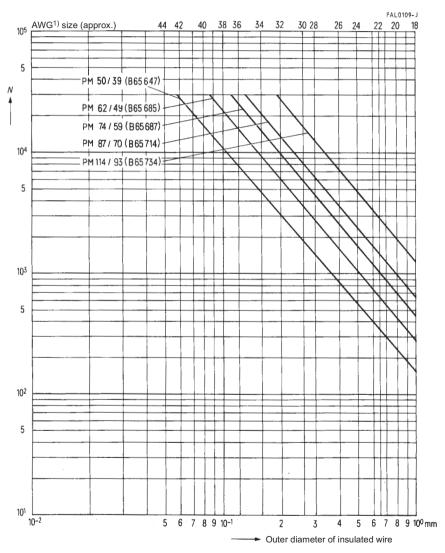
Figure 26 Percentage change in A_L value versus relative winding height h/H

RM cores

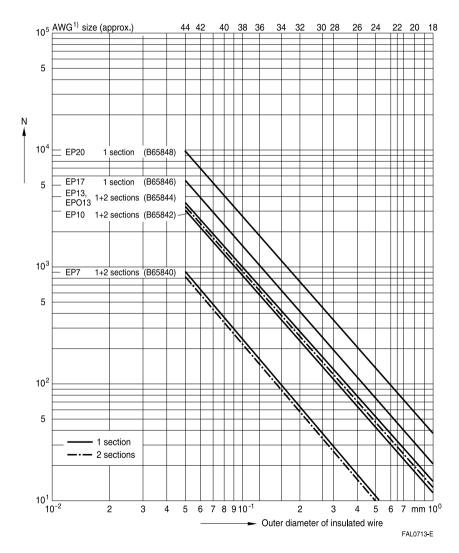


FAL0712-6

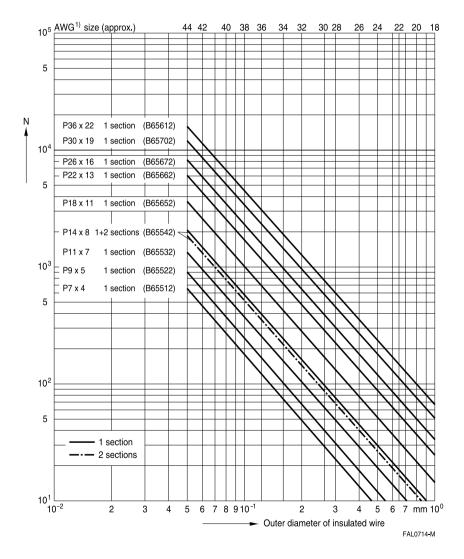
¹⁾ American Wire Gauge (AWG)



PQ cores


PM cores

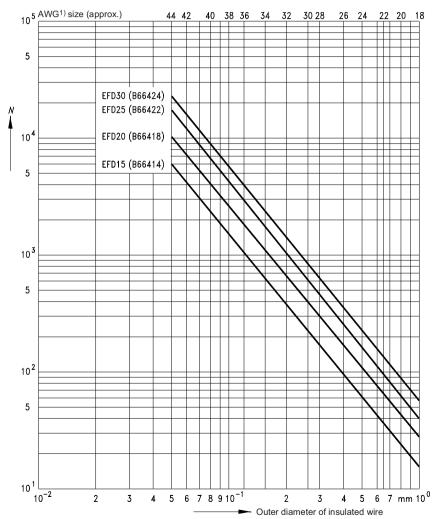
¹⁾ American Wire Gauge (AWG)



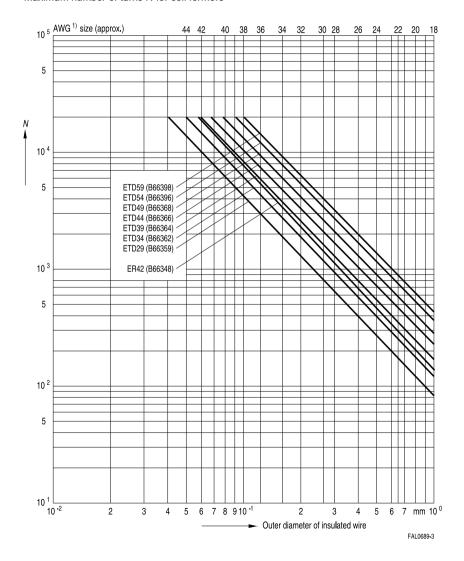
EP cores

¹⁾ American Wire Gauge (AWG)

P cores

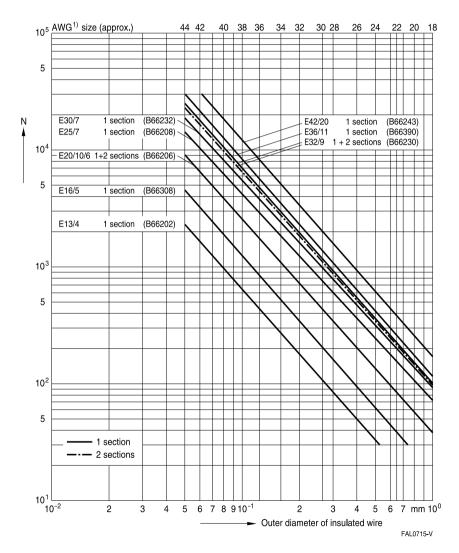

¹⁾ American Wire Gauge (AWG)

EFD cores

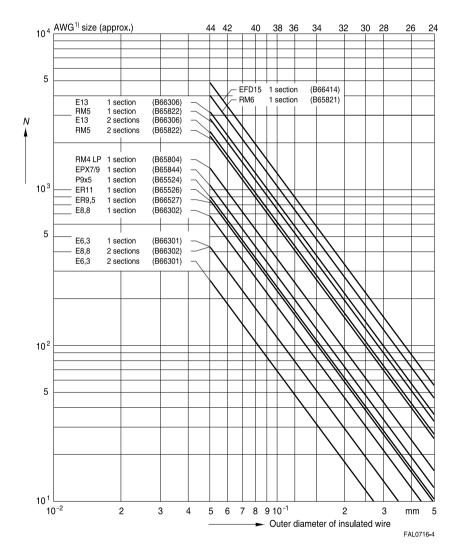

Maximum number of turns N for coil formers

FAL0427-1

¹⁾ American Wire Gauge (AWG)


ETD and ER cores

¹⁾ American Wire Gauge (AWG)



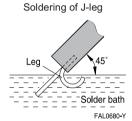
E cores

¹⁾ American Wire Gauge (AWG)

SMD types

¹⁾ American Wire Gauge (AWG)

Processing notes


2.2 Soldering/Inductor assembly

The winding wires are preferably connected to the pins by dip soldering. Note the following when soldering:

- Prior to every dip soldering process the oxide film must be removed from the surface of the solder bath.
- 2 to 3 turns of the wire are dipped into the solder bath; the coil former must not be allowed to come too close to the solder or remain there for too long (see diagram).
- Typical values are: Bath temperature: 400 °C, soldering time: 1 s.

Signal of the state of the stat

Soldering of PTH (pin through hole)

For inductor assembly, it is advisable to clamp the cores with the associated relevant mounting assemblies for the coil formers and cores. In this way it is possible to avoid the effects of external mechanical stress.

2.3 Design and processing information for SMD components

2.3.1 Automatic placement

EPCOS ferrite accessories are suitable for automatic placement. Many automatic placement machines pick up the components with suction probes and pliers, so the inductive components should have simple and clear contours as well as a sufficiently large and flat surface. Ferrite cores with a perpendicular magnetic axis, e.g. RM and ER cores, have a smooth surface and the flange for the coil former is styled right for the purpose. For cores with a horizontal magnetic axis, e.g. E cores and toroids, we provide cover caps to meet these requirements.

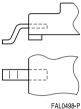
2.3.2 Coplanarity

Coplanarity means the maximum spacing between a terminal and a plane surface. If inductive components are fabricated with coplanarity of <0.2 mm for example, then one or more terminals may be spaced maximally 0.2 mm from a plane surface.

Inductive components are fabricated to standard with coplanarity of <0.2 mm. Coplanarity is influenced by a number of factors:

- a) Coil former specification
 - The coplanarity of the coil former is <0.1 mm for manufacturing reasons.
- b) Winding wire
 - Use of thick winding wire (e.g. 0.25 mm diameter in model ER 11) leads to considerable mechanical strain on the terminal during winding, and this can degrade coplanarity.
- c) Soldering temperature and duration

When winding wire is soldered to a terminal, the coil former is subjected to high thermal stress. If thick wires have to be soldered, the soldering temperature and/or duration increase and thus the thermal stress on the coil former too. This also degrades coplanarity.



Processing notes

Consequently the use of thick wires degrades coplanarity in two ways: greater mechanical strain when winding, and greater thermal stress during soldering.

If electrical requirements call for the use of thick wires, either the manufacturing effort is greater (it takes longer and the costs are higher), or a terminal geometry has to be chosen that is suitable for the use of thick wires. EPCOS offers two different SMD lead geometries: gullwings and J terminals.

With gullwings the wire is wound direct on the terminal, which is then soldered on the circuit board. With J terminals the wire is wound on a separate pin, and the J terminal is soldered to the circuit board.

So gullwings are suitable for applications with thin wire (up to approx. 0.18 mm in diameter), and J terminals for use with thick wire (upwards from 0.18 mm in diameter). These figures for wire diameter are only intended as guidelines. Depending on wire diameter, the winding arrangement, the pinning and electrical requirements, one has to decide from case to case which solution is best for the particular application.

2.3.3 Solder paste application

Coplanarity has to be considered when determining the thickness of the solder paste. If coplanarity is <0.2 mm for example, the solder paste has to be applied at least 0.2 mm thick to ensure proper soldering.

2.4 Adhesive application and core mating

A quantity of adhesive appropriate to the area in question is applied to the cleaned surface of the core's side walls. The centerpost must remain free of adhesive. The two core halves without coil former are then placed on a mandrel and rotated against each other two or three times to spread the adhesive. A slight ring of adhesive exuding around the edges indicates that sufficient adhesive has been applied.

On porous, low-permeability SIFERRIT materials (K) the adhesive should be applied and spread twice.

The next step should follow immediately since the adhesive film easily attracts dust and absorbs moisture. Therefore, the core pair with adhesive already applied is opened for a short time and the wound coil is inserted without touching the mating surfaces.

The wound coil is then fixed into position. This can be done by using resilient spacers which must be inserted before applying the adhesive. Appropriate spacers are available on request.

The coil former can also be fixed by gluing, e.g. using adhesive d), but only at one spot on the core bottom to avoid any mechanical stress caused by the difference in thermal expansion of core and coil former.

Processing notes

Adhesive e) is suitable for external gluing, which implies only four dots of adhesive at the joints on both sides of the openings. Because of the somewhat lower torsional strength, it should be noted that this kind of gluing should only be used with mounted cores.

2.5 Holding jigs

The core assembly is cured under pressure in a centering jig. The core center hole – where present – is used for centering, and two to eight coils can be held in one jig with a pressure spring. Spacers will ensure that the pressure is only exerted on the side walls of the core.

Single jigs facilitate the coil inductance measurement, which has proved useful for checking cores with small air gaps before the adhesive has hardened. Small inductance corrections can be made by slightly turning the core halves relative to each other.

2.6 Final adjustment

(possible only with adjustable cores)

With all assembled ferrite cores, a magnetic activation takes place as a result of mounting influences such as clamping, gluing and soldering, i.e. a disaccommodation process commences. Therefore the final adjustment for high-precision inductors should take place no earlier than one day after assembly; preferably, one week should first elapse.

2.7 Hole arrangement

For drilling the through-holes into the PC board we recommend the dimensions given in the hole arrangement for each coil former, which depend on the distance of the pins on the pin outlet level.

2.8 Creepage and clearance

For telecom transformers the clearance and creepage distances and the thickness of insulation must be considered acc. EN 60950 subclause 2.9.

Survey of packing modes

Ferrite cores

		1		
	Туре	Packing	Para.	Page
RM cores	RM 4 RM 10	Blister tape	3.2	187
	RM 12, RM 14	Standard tray	2.2.1	185
PQ cores	PQ 16 PQ 50	Standard tray	2.2.1	185
	PQ 26 PQ 32	Cardbord tray on request	3.6	186
PM cores	PM 50/39 PM 114/93	Standard tray	2.2.1	185
P cores	All P cores	Standard tray	2.2.1	185
	P 9 × 5 P 22 × 13	Blister tape on request	3.2	187
P core halves	7.35 × 3.6 150 × 30	Standard tray	2.2.1	185
EP cores	EP 5 EP 20, EPX 9/9	Standard tray	2.2.1	185
	EPX 7/9, EPX 10, EPO 13	Blister tape on request	3.2	187
E cores	E 5 E 10	Standard tray	2.2.1	185
	E 5 and E 6.3	Blister tape on request	3.3	189
	Core length 12.6 36 mm	Block packing	2.2.2	185
	Core length > 36 mm	Standard tray	2.2.1	185
	E 47	Skin packing	3.6	191
ELP cores	All ELP cores	Standard tray	2.2.1	185
	ELP 43, I 43	Skin packing	3.6	191
ER cores	All ER cores	Standard tray	2.2.1	185
		(blister tape on request)	3.2	187
	ER 32	Skin packing	3.6	191
EQ cores		Standard tray	2.2.1	185
ETD cores				
EFD cores				
EV cores				
U and I cores		Standard tray	2.2.1	185
Toroids (ring cores)	Packing depends on size	Standard tray	2.2.1	185
	and version	Box	2.3.2	186
	(coated/uncoated)	Bag	2.3.1	186
Double-aperture cores		Bag	2.3.1	186

Accessories

Coil formers	Polystyrene boards, carton boxes, bags and blister trays	2.4	186
Mounting assemblies	Boxes	2.3.2	186
Clamps	Bags (individual clamps)	2.3.1	186
Insulating washers	Bags (individual washers), boxes	2.3.1	186
Insulating washers	Packed on reels	2.3.2	186

1 General information

Our product packaging modes ensure maximum protection against damage during transportation. Moreover, our packing materials are selected with environmental considerations in mind. They are marked with the appropriate recycling symbols.

Because of the large variety of types and sizes, we use five basic kinds of packing, which are described in points 2 and 3 below:

- Blister tape
- Tray
- Container
- Reel
- Magazine

The packing units are based on the following system:

1.1 Packing unit (PU)

Usually, a packing unit is a collection of a number of basic packages. The size of the packing unit is stated for the particular components in their data sheets. When ordering, please state complete packing units if possible. We reserve the right to round the ordered quantity accordingly.

1.2 Dispatch unit

A number of packing units are combined to form a dispatch unit. Standard dispatch units for large quantities are a Europallet or pallet carton. For small quantities, folding corrugated cardboard boxes are used in standard sizes. In the case of small quantities a dispatch unit may also include packages with other components.

1.3 Barcode label

On the product packing label (standard label) we include bar-code information in addition to plain text. In addition to benefits relating to the internal flow of goods, this provides above all a more rapid and error-free means of identification checking for the customer.

2 Modes of packing

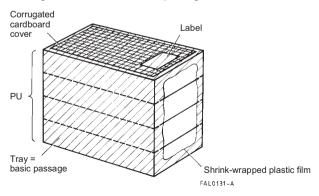
2.1 Blister tape

Blister packing was specially devised for handling by automatic systems but has also proved to be very good for conventional handling, especially where small quantities are concerned. See point 3.2 for a detailed description and a list of the core types that can be supplied in this type of packing.

2.2 Tray (pallet)

2.2.1 Standard tray

The polystyrene tray (basic package) is the standard packing for most types of core. The area of $200~\text{mm} \times 300~\text{mm}$ corresponds to the module dimensions of DIN 55 510 and is based on the area of the $800~\text{mm} \times 1200~\text{mm}$ Europallet. Depending on the overall height of the trays and the numbers contained, several trays will be stacked to form a packing unit and provided with a corrugated cardboard cover. For the protection of the cores the entire stack is also shrink-wrapped in polyethylene film


Each core is enclosed in a separate compartment. When P cores and similar types are packed in sets, the halves of the core pairs are packed so that their pole faces are opposite one another. As a rule their association is identified by markings in the polystyrene (recessed webs, thinner webs). In the case of P 3.3×2.6 and P 4.6×4.1 cores the halves of a set are not located in a single tray but in different trays of a packing unit.

2.2.2 Block packing

For E and U core we prefer block packing in trays with the dimensions $200 \text{ mm} \times 300 \text{ mm}$. The symmetry, position, length and spacing of the blocks are always the same. The height of the tray is dependent on the size of the core. For the makeup of a packing unit see point 2.2.1.

Block packing can be supplied in boxes of corrugated cardboard (special packing unit!) on request. Block packing permits highly rationalized handling and is designed for automatic processing.

Packing unit for standard or block packing

2.3 Container

2.3.1 Bag

Small ferrite parts are packed in flat polyethylene bags. The number per bag depends on the volume of the parts. Generally four bags in a corrugated cardboard box form a packing unit.

Small accessories (clamps, pinless and SMD coil formers) are also packed in this way. The size of the bag depends on the volume of the parts (packing unit).

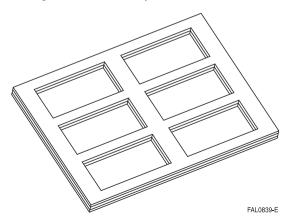
2.3.2 Boxes

Coated ring cores of medium size are packed in cardboard boxes with cardboard or polyethylene foam inlays. The number per box depends on the volume of the cores.

Accessories (large mounting assemblies, clamps, washers packed on reels etc.) are packed in boxes of cardboard or corrugated cardboard.

2.4 Packing for coil formers

For coil formers we use different packing types depending on size, pin type and packing equipment. So we use polystyrene boards for some PTH coil formers like RM types. For most of the other PTH coil formers and some SMD coil formers we use cardboard boxes as bulk packaging. Coil formers without pins are mainly packed in plastic bags. For some SMD coil formers we also use blister tray packaging.


2.5 Cardboard trav

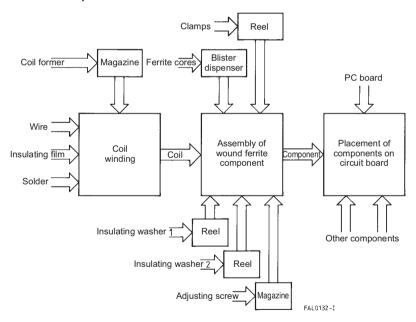
Cardborad trays are a new ecological packing system, stacked in a cardboard box or in a plastic bag.

Advantages:

- Environmentally friendly solution with easy-to-recycle materials.
- Good removing cores from tray.

Packing unit for cardboard trays

3 Delivery modes for automatic processing


3.1 General information on inductor production

The inductor parts described in the following can be handled by automatic manufacturing systems. In addition to automatic winding machines – which can be combined with wrapping, fluxing and soldering stations – flexible, high-performance automatic assembly lines are available. Design and packing of the individual parts (ferrite cores, coil formers, clamps, insulating washers and adjusting screws) have been optimized for automatic processing and permit easy feeding to the various stations of production lines.

We supply RM cores up to RM10 (P and EP cores on request) blister-taped in dispenser boxes. By inserting a plate-shaped resilient insulating washer between core and coil former, gluing can be dispensed with.

We also provide consulting services with examples of implementations to customers planning to introduce automatic production lines.

Production sequence

3.2 Cores in blister tape (strips)

The cores are packed in sets ready for assembly, i.e. a stamped core with the base upwards and an unstamped core (possibly with a threaded sleeve) with the pole face upwards. The blister tapes have a hole at one end for orientation purposes (see also illustration). The tapes are sealed with a paper cover. Looking at a tape with the hole on the left and the paper cover on top, then after

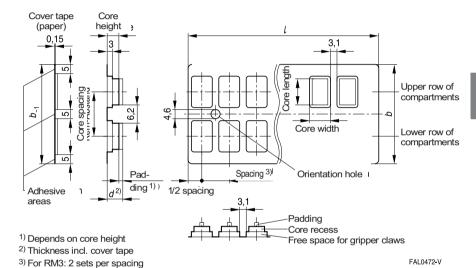
removing the paper cover the stamped cores will be in the upper row and the unstamped cores of the sets in the lower row.

Several blister tapes are combined in a box with a perforated tear-off cover (dispenser pack) to form a packing unit. The tapes are packed so that the orientation hole appears in the dispenser opening. The box is shrink-wrapped in polyethylene film.

The following table lists the core types which are available in blister tape:

Туре	Dimensions of blister tape $I \times b \times d$	Spacing	Spacing upper/	Dimensions of dispenser pack I × b × h	Sets/ tape	Tapes/ box	Sets/ box	Approx. net weight
	mm	mm	row mm	mm				a
RM cores	111111	111111	111111	111111				g
RM 4	340 × 60 × 6.6	17.0	27.5	349 × 63 × 203	20	30	600	1000
RM 4 LP	$340 \times 60 \times 5.0$	17.0	27.5	349 × 63 × 203	20	40	800	
RM 5	$340 \times 60 \times 8.0$	17.0	27.5	349 × 63 × 203	20	25	500	1550
RM 6	$340 \times 60 \times 8.0$	17.0	27.5	349 × 63 × 203	20	25	500	2550
R 6	$340 \times 60 \times 8.0$	17.0	27.5	$349 \times 63 \times 203$	20	25	500	2550
RM 7	$295 \times 82 \times 9.4$	29.5	38.5	301 × 85 × 240	10	25	400	1925
RM 8	$295\times82\times11.8$	29.5	38.5	$301 \times 85 \times 240$	10	20	200	2600
RM 10	$295\times82\times11.8$	29.5	38.5	$301 \times 85 \times 240$	10	20	200	4600
RM 10 LP	$295\times82\times9.4$	29.5	38.5	301 × 85 × 240	10	25	250	
EP cores (c	on request)							
EP 7	340 × 60 × 5.0	17.0	27.5	349 × 63 × 203	20	40	800	1260
EP 10	$340\times60\times8.0$	17.0	27.5	349 × 63 × 203	20	25	500	1375
EP 13	$340\times60\times8.0$	17.0	27.5	349 × 63 × 203	20	25	500	2550
EP 17	$295\times82\times11.8$	29.5	38.5	301 × 85 × 240	10	20	200	2220
EP 20	$295\times82\times11.8$	29.5	38.5	301 × 85 × 240	10	20	200	5640
P cores (on	request)							
P 9×5	340 × 60 × 4.0	17.0	27.5	349 × 63 × 203	20	50	1000	800
P 11 × 7	$340\times60\times4.0$	17.0	27.5	349 × 63 × 203	20	50	1000	1700
P 14 × 8	295 × 82 × 5.9	29.5	38.5	301 × 85 × 240	10	40	400	1280
P 18 × 11	295 × 82 × 9.4	29.5	38.5	301 × 85 × 240	10	25	250	1500
P 22 × 13	295 × 82 × 9.4	29.5	38.5	301 × 85 × 240	10	25	250	3250
E cores (tape/reel on request)			Piece	s/reel	Piece	s/box		
E 5	27000 × 12 × 2.7	4.0	4.0	370 × 340 × 100	6500		32500)
E 6.3	27000 × 12 × 2.7	4.0	8.0	370 × 340 × 100	3400		17000	

For ordering codes refer to the individual data sheets.

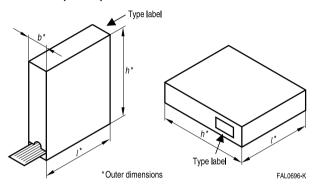

Dimensions are nominal; tolerances given in design drawings.

3.3 Cores in blister tape (reeled)

E 5 and E 6.3 cores can also be supplied taped and reeled as per IEC 60286-3, optionally in conductive or non-conductive tapes. The cores are oriented for automatic feeding. The tapes are sealed with a transparent cover tape and wound on 330-mm polystyrol reels. Each reel is identified with a barcode label and a release label.

3.4 Blister tapes

The blister compartments always comprise the following function spaces: a free space for the gripper claws, the recess in which the core rests and the padding.

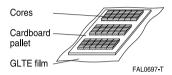

The free space enables the cores to be removed by mechanical grippers. On the reverse side of the blister, these free spaces lead to a regular grid arrangement with a spacing of 6.2 mm and 3.1 mm. The blisters should be guided and stopped at these intervals. A hanging arrangement is to be preferred, because this avoids problems arising in case the blister height or padding thickness varies.

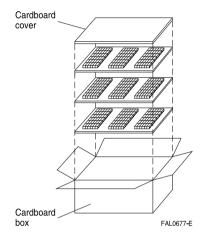
The core recess centers the core in the blister compartment.

The padding serves as protection during transport and as spacing to achieve correct filling of the dispenser pack. The shape and position of the padding may vary, depending on the production method used. All padding dimensions given must therefore be considered to be subject to change at any time.

3.5 Dispenser pack

To open a blister tape manually, peel back the paper cover tape smoothly but not too quickly, along the axis of the tape as shown in the following illustration.


When opening a blister tape automatically, it is advisable not to completely remove the paper cover. Rather, the cover paper should be divided up by means of 4 longitudinal cuts so that the mating surfaces remain on the blister (cf. blister tape illustration). The paper strips produced above the two rows of compartments can then be easily lifted. This avoids malfunctions resulting from fluctuations in the adhesive properties of the paper sealing tape.



3.6 Skin packing

Skin packing is a new and very compact packing method.

Several cores are placed on a cardboard pallet and sealed in GLTE film by heat shrinking. The various pallets are then stacked in a cardboard box.

Advantages

- Environmentally friendly solution with easy-to-recycle materials
- Suitable for all cores larger than E 30
- Good protection of mating surface
- Film can be peeled back very easily
- Code numbers printed on cores can be read through transparent film

Cores for which skin packing is used:

E 47, ELP 43, I 43, ER 32; special types on request.

Corporate goals

Our aim is to play a leading role among the world's most competitive companies in the sector of electronic components. This aim is shared by the EPCOS quality and environment management system:

1 EPCOS quality system

1.1 Extract from EPCOS quality policy

- The quality of our products and services represents a key constituent of our corporate strategy, whose principal aim is customer satisfaction.
- Our quality management system is continuously oriented to the international standards that stipulate the highest requirements.

1.2 Quality management system

The quality management system to ISO/TS 16949 is applied throughout the company and is used to implement the EPCOS quality policy. The implications include:

- As a rule, product and process developments follow the rules of APQP1),
- Quality tools such as FMEA²), DoE³⁾ and SPC⁴⁾ minimize risks and ensure continuous improvements in conjunction with regular internal audits and QM reviews.

1.3 Certification

The EPCOS quality management system forms the basis for the company certification to ISO 9001 and ISO/TS 16949 that includes all EPCOS plants and sales organizations. The company certificates are posted on the EPCOS Internet (www.epcos.com/quality).

1.4 Production sequence and quality assurance

The business units implement the corporate specifications for quality management in procedural and work instructions referred to products and processes.

The following example shows quality assurance applied to the production sequence of ferrites.

¹⁾ APQP = Advanced Product Quality Planning

²⁾ DoE = Design of Experiments

³⁾ FMEA = Failure Modes and Effects Analysis

⁴⁾ SPC = Statistical Process Control

Production sequence and quality assurance during ferrite manufacture (schematic)

	Production steps	Quality assurance
	Raw materials (powder)	
	Incoming inspection Analysis of chemical comp. (X-ray fluorescence analysis)	X-ray fluorescence analysis reports
V	Granulate production Weighing, mixing, presintering, milling. Homogenization, spraying ind. process control checks	
	Batch release Chemical analysis Manufacture and testing of sample cores	Batch release report
	Granulate storage	
*	Cores production Pressing, debindering, sintering incl. process control checks	
	Sinter check Testing of electrical and mechanical properties	Sinter check test report
	Cores processing e.g. surface grinding, A _L grinding, etc. incl. process control checks	
—	Packing in PU (factory packing)	
	Final inspection/Monitoring Testing electr./mech. properties	Final inspection reports
	Delivery release, Outgoing inspection, Checking of reports and finish labeling	Date code and batch number on packing
	Sales warehouse	

1.5 Delivery quality

"Delivery quality" means compliance with the agreed data at the time of delivery.

1.6 Failure criteria

A component is defective if one of its features does not correspond to the specification of the data sheet or an agreed delivery specification.

1.7 Incoming goods inspection at the customer

For the incoming inspection, we recommend the use of a random sampling plan to DIN ISO 2859 Part 1 (contents compliant with MIL STD 105 D or IEC 60410).

The test methods used and the AQL must be agreed between the customer and supplier.

1.8 Final inspection/approval for shipment

Final inspection verifies the major properties of the end products batch by batch, usually by means of fully automated selection tests.

Approval for shipment helps certify that products shipped comply with specifications. It includes:

- testing of principal parameters,
- identification check and visual assessment,
- examination of papers accompanying the batch.

1.9 Reliability

A variety of endurance tests and environmental tests are conducted to assure the product reliability. These tests are derived from the extremes of expected application conditions, with test conditions intensified to obtain authoritative results within a reasonable period.

The reliability testing programs of EPCOS are based on the test plans of international standards and customer requirements.

EPCOS performs reliability tests to qualify new component families and for periodic requalification.

1.10 Traceability

By recording the lot or batch numbers on the documentation accompanying the process, complete traceability is maintained in the production sequence.

After delivery, traceability to the internal release inspections ("quality control gates") is ensured by the batch number which is printed on the label.

1.11 Electrical properties

The measuring conditions can be found in the chapter "General – Definitions". The product data and relevant tolerance limits are defined in the respective data sheets. The material data given in the chapter "SIFERRIT materials" are to be understood as typical values.

Measuring conditions deviations from the data book require an agreement between the customer and the EPCOS.

1.12 Dimensions

The dimensional drawings in the individual data sheets are definitive for the dimensions.

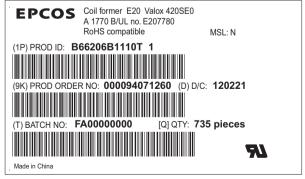
1.13 Finish

Assessment of the finish of ferrite cores is performed in accordance with EPCOS finish specifications. These are based on IEC 60424. Detailed drawings, which are available on request, specify the maximum permissible limit values for damage which can never be totally excluded with ceramic components. Assessment of the solderability of terminal pins for coil formers and clamps is carried out for PTH types to IEC 60068-2-20, test Ta, method 1 (aging 3) and for SMD types to IEC 60068-2-58.

1.14 AQL values

Within the framework of our quality goals, we are gradually tightening the AQL values which are intended for use in the customer's incoming goods inspection, currently the value AQL 0.25 is applicable, if not otherwise specified.

1.15 Barcode label


The packing of all EPCOS components bears a barcode label stating the type, production ID (1P), lot number (1T), date code (10D), production number (30P) and quantity (Q). This enables a component to be traced back through the production process, together with its batch and test report.

Example for core label

FAL0685-5

Example for accessories label

FAL0782-L-E

1.16 Conditions of use

Please note the "Important notes" on page 2.

Should you have any application-referred questions, please contact our experts, who will be pleased to advise you.

1.17 Customer complaints

If a fault occurs in a product despite careful manufacture and testing, please contact your local sales organization. They will register your complaint as an RMA¹⁾ process and forward it to the relevant technical departments for rapid handling.

EPCOS treats technical complaints according to the 8D methodology; i.e. with the use of interdisciplinary teams who aim to implement rapid countermeasures and sustained corrections and answer all complaints with an 8D report (8D = 8 disciplines).

In order to be able to deal quickly and smoothly with complaints, the following data are helpful:

- Number of components subject to complaint or returned
- Fault description
- How and when was the fault detected?
- Logistics data (date code, delivery note no.)
- Operating conditions
- Operating duration up to occurrence of the fault
- Measurement parameters in the case of divergent technical data

In the event of transport damage, we would ask you to describe this in more detail and if required to mark it so that it can be distinguished from any further damage sustained during the return shipment. The original package should also be checked and any damage to be described. In order to avoid further damage, the original packaging should also be used for the return shipment.

¹⁾ RMA = Return of Material Authorization

2 Environmental management system

2.1 Environmental policy

Our fundamental commitment to environmental protection is laid down in the EPCOS environmental policy:

EPCOS defines the following environmental protection principles:

- We work continuously toward reducing the burden on the environment, toward minimizing associated risks and toward lowering the use of energy and resources, above and beyond the legal requirements.
- We take appropriate precautions to avoid environmental hazards and to prevent damage to the environment.
- 3. Potential impact on the environment is assessed and incorporated in process and product planning at the earliest possible stage.
- 4. By applying appropriate management, we ensure that our environmental policy is implemented effectively. The technical and organizational procedures required to do this are monitored regularly and constantly further developed.
- 5. Each employee is required to act in an environmentally conscious manner. It is the constant duty of management to increase and encourage awareness of responsibility at all levels.
- We work with our business partners to promote conformity with similar objectives. We supply our customers with information on ways to minimize any potentially adverse environmental impacts of our products.
- 7. We work in a spirit of cooperation with the relevant authorities.
- 8. We inform the public of the impact on the environment caused by the company and our activities related to the environment.
- 9. To regard the rules of labour safety is the task for each employee.
- 10. We take preventive measures to avoid work-related accidents.

2.2 Environmental management system

The EPCOS ISO 14001 based environmental management system is applied company wide for implementing the EPCOS environmental policy. It is posted on the EPCOS Intranet and is thus accessible to all employees.

2.3 Certification

The EPCOS Group operates an environmental management system that conforms to the requirements of ISO 14001 and is mandatory for all plants.

The company certificate is posted on the EPCOS internet: (www.epcos.com/environmental management).

2.4 RoHS

The term "RoHS-compatible" shall mean the following:

Components defined as "RoHS-compatible" are compatible with the requirements of Art. 4 of Directive 2011/65/EU ("RoHS II") of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment of 8 June 2011 and with the requirements of the provisions which will result from transposition of RoHS II into national law to the extent such provisions reflect the directive.

"RoHS-compatible" components do not contain any of the following substances at a content exceeding the maximum concentration limits of 0.1 % for lead, mercury, hexavalent chromium, PBB, PBDE, and 0.01 % for cadmium at a homogeneous material level, except the application is exempted by Annex III of "RoHS II".

2.5 REACH

According to Art. 33 we are obliged to inform our customers immediately or on request a consumer within 45 days if we get knowledge that a Substance of Very High Concern (SVHC) is contained in a product or it's packaging with more than 0,1 % w/w. Provided this substance is published by the European Chemical Agency via the candidates list. Respective information is provided via www.epcos.com/reach (Link: REACH Candidates List and Information according REACH Art. 33, concerning EPCOS Products).

2.6 Banned and hazardous substances in components

As a manufacturer of passive components, we develop our products on the basis of sustainability. In order to establish a standardized procedure for EPCOS worldwide, a material compliance management and a mandatory list of banned and declarable substances and substances of special interest (EPCOS BAD-SL) are part of our quality management system. The planning and development instructions include regulations and guidelines that aim to identify environmental aspects and to optimize products and processes with respect to material use and environmental compliance, to design them with sparing use of resources and to substitute hazardous substances

Consideration of the environmental aspects is checked and recorded in the design reviews: the environmental officer provides support in the assessment of the environmental impacts of a development project.

2.7 Material data sheets for product families

EPCOS posts material data sheets on the Internet (www.epcos.com/material) that show typical compositions of product groups by selected representatives. The materials are listed with their percentage weight distribution referred to the respective component.

As per IEC/PAS 61906, all materials with a weight percentage exceeding 0.1 % are listed. All specifications are typical data and may vary slightly within a product group or production lot.

The material data sheets do not represent guaranteed properties, but are merely given for purposes of information

Please note in this connection the "Important notes" on page 2.

2.8 Disposal

as far as possible.

All ferrite cores and accessories can be disposed of, reused or recycled. However as disposal is regulated by national law, the respective national provisions have to be observed.

Standards and specifications

1 IEC standards

Please refer also the latest CO publications (www.iec.ch)

Standard	Title
IEC 60133 Ed. 4.0	Dimensions of pot cores made of magnetic oxides and associated parts (will be replaced by IEC 62317-2)
IEC 60205 Ed.3.0	Calculation of the effective parameters of magnetic piece parts
IEC 60401-1 Ed. 1.0	Terms and nomenclature for cores made of magnetically soft ferrites – Part 1: Terms used for physical irregularities
IEC 60401-2 Ed. 1.0	Terms and nomenclature for cores made of magnetically soft ferrites – Part 2: Reference of dimensions
IEC 60401-3 Ed. 1.0	Terms and nomenclature for cores made of magnetically soft ferrites – Part 3: Guidelines on the format of data appearing in manufacturers' catalogues of transformers and inductor cores
IEC 60424-1 Ed. 1.0	Ferrite cores – Guide on the limits of surface irregularities – Part 1: General specification
IEC 60424-2 Ed. 1.0	Guidance of the limits of surface irregularities of ferrite cores – Part 2: RM cores
IEC 60424-3 Ed. 1.0	Ferrite cores – Guide on the limits of surface irregularities – Part 3: ETD cores and E cores
IEC 60424-4 Ed. 1.0	Ferrite cores – Guide on the limits of surface irregularities – Part 4: Ring cores
IEC 60647 Ed. 1.0	Dimensions for magnetic oxide cores intended for use in power supplies (EC cores) (will be replaced by IEC 62317-11)
IEC 60732 Ed. 1.0	Measuring methods for cylinder cores, tube cores and screw cores of magnetic oxides
IEC 61185 Ed. 2.0	Magnetic oxide cores (ETD cores) intended for use in power supply applications – Dimensions (will be replaced by IEC 62317-6)
IEC 61246 Ed. 1.1	Magnetic oxide cores (E cores) of rectangular cross-section and associated parts – Dimensions (will be replaced by IEC 62317-8)
IEC 61247 Ed. 1.0	PM cores made of magnetic oxides and associated parts – Dimensions (will be replaced by IEC 63217-10)
IEC 61332 Ed. 2.0	Soft ferrite material classification
IEC 61333 Ed. 1.0	Marking on U and E ferrite cores
IEC 61596 Ed. 1.0	Magnetic oxide EP cores and associated parts for use in inductors and transformers – Dimensions (will be replaced by IEC 62317-5)

Standards and specifications

Standard	Title
IEC 61631 Ed. 1.0	Test method for the mechanical strength of cores made of magnetic oxides
IEC 62044-1 Ed. 1.0	Cores made of soft magnetic materials – Measuring methods – Part 1: Generic specification
IEC 62044-2 Ed. 1.0	Cores made of soft magnetic materials – Measuring methods – Part 2: Magnetic properties at low excitation level
IEC 62044-3 Ed. 1.0	Cores made of soft magnetic materials – Measuring methods – Part 3: Magnetic properties at high excitation level
IEC 62317-4 Ed. 1.0	Ferrite cores – Dimensions – Part 4: RM cores and associated parts (replaces IEC 60431 Ed. 2.0)
IEC 62317-7 Ed. 1.0	Ferrite cores – Dimensions – Part 7: EER cores
IEC 62317-9 Ed. 1.0	Ferrite cores – Dimensions – Part 9: Planar cores (replaces IEC 61860 Ed. 1.0: Dimensions of low-profile cores made of magnetic oxides)
IEC 62323 Ed. 1.0	Dimensions of half pot cores made of magnetic oxides for inductive proximity switches (will be replaced by IEC 62317-3)
IEC 62358 Ed. 1.0	Ferrite cores – Standard inductance factor (A _L) and its tolerance
IEC/TR 61604 Ed. 1.0	Dimensions of uncoated ring cores of magnetic oxides (will be replaced by IEC 62317-12)

1.1 Quality assessment

The IEC standards mainly specify dimensions, designations and magnetic characteristics, whereas the European system of quality assessment CECC and the harmonized DIN-CECC standards additionally define methods of measurement and quality levels.

Since 1982 the IEC has been establishing the so-called IEC Q-system, which will have worldwide applicability. German DIN IEC standards are being harmonized with this quality system.

CECC and IEC-Q standards have a similar structure: they are subdivided into generic specifications (GS), sectional specifications (SS) and blank detail specifications (BDS). The numbering system of QC is analogous to that of CECC.

The detail specifications of CECC and IEC do not fully correspond to each other.

A quality assessment system of "Capability Approval" for the production of ferrite parts is being established.

RM cores

General information

1 General information

The demand for coil formers with integrated pins for efficient winding gave rise to the development of compact RM (Rectangular Modular) cores. Furthermore, this design allows high PCB packing densities. RM coil formers and accessories are suited to automatic processing.

During assembly, RM cores are held in place by clamps which engage in recesses in the core base. The various clamping forces defined, which have been verified by EPCOS through measurements, are specified in the individual data sheets.

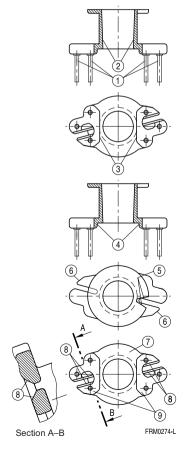
The core dimensions are matched to standard PCB grids. RM 6 means, for example, that the core with coil former fills a square basic area 6×6 modules (1 module \cong 2,54 mm) = 15,24 \times 15,24 mm². The mainly used core sizes RM 4 through RM 14 are specified in IEC 62317.

2 Applications

- Originally RM cores from Siemens (today EPCOS) were essentially designed for two major applications, i.e.
 - very low-loss, highly stable filter inductors and other resonance determining inductors (materials N48, M33 and K1) and
 - low-distortion broadband transmission at low signal modulation (materials T66, T38, T57, N30).

Even today there is still a high demand for RM cores suited to these applications.

- RM cores are increasingly required for power applications. For this purpose our core series made of materials N87, N92, N97 and N49 (ungapped) is particularly well suited. Matching coil formers with larger pin spacings are available. RM cores without center hole (higher A_L value and greater power capacity) are used for transformer applications.
- Our product range also includes low-profile RM cores, whose significantly reduced overall height makes them suitable for small-signal, interface and matching transformers and also for transformer and energy storage chokes in DC/DC converters with a high pulse rate (materials N87 and N49). The low-profile types are particularly suited for applications where the winding is printed onto the PCB and the core is fitted to the board from either side.
- In addition to conventional accessories, SMD coil formers are available for RM 4 LP, RM 5 and RM 6.
- RM cores with or without center hole can be supplied in any material on request.
- For power applications, particularly for compact energy storage chokes, we supply the RM 12 and RM 14 cores with optimized, strengthened base thickness.


RM cores

General information

3 Coil formers for automatic processing

Automated manufacture is gaining more and more importance for the low-cost production of inductive components. The prerequisites are high-performance winding and assembly machines on the one hand, and suitable accessories on the other.

The new EPCOS RM coil formers were developed to meet this demand. These coil formers are not only matched to the versatile concepts of automation, but also offer advantages for manual winding. The essential improvements of the version optimized for automatic processing will be described in the following, taking the example of an RM6 coil former. The consistent utilization of these benefits will in most cases bring about a reduction of production costs for inductors and transformers.

Please read *Important notes* on page 2 and *Cautions and warnings* on page 609.

 Squared pins or pin squared in the start-ofwinding area:
 Secure restraint of the ends of the winding even with 2 to 3 winding corners: the winding

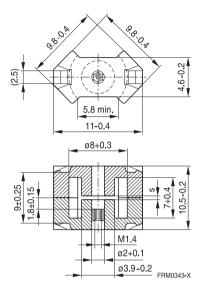
process is considerably accelerated.

- ② Internal diameter slightly conical and highly accurate: Easy and fast slipping-on and snug fit on the winding tools.
- ③ Shortened wire guidance slots: Substantially higher flange breaking strength.
- ④ Almost parallel flanges with minimum radii at the winding cylinder to the flange: Correct winding layers, more turns, neat and rapid winding.
- ⑤ V-shaped slot in the pinless flange: Automatic loading and unloading of winding machine possible. Substantially more accurate fixing and arrangement of the coil formers.
- (§) Lengthened wire catching nose: Leads all wires safely into the wire guidance slots, even at high winding speed.
- Pinless flange without marking: Substantially more accurate arrangement of the coil formers for winding and wrapping.
- ® Slot outlet stepped in height: Owing to the transfer of the wire crossing to the level of the slot, short circuit is prevented when soldering the ends of the winding to the pins.
- Insulation web:
 Improved insulation between the winding wires and the ferrite core.

Core and accessories

	Individual parts	Part no.	Page
<u> </u>	Adjusting screw	B65539	
		B65806	208
	- Core	B65803	204
	- Clamps	B65806	207
	Ciamps	B03000	201
	- Insulating washer 1		
	-		
	- Coil former	B65804	206
		B00001	200
47 0			
	- Core	B65803	204
<u> </u>	Threaded sleeve (glued-in)		
60000	Insulating washer 2	B65804	207
مئي من	ilisulating washer 2	D03004	201
FRM0009-2	2		
Example of an assembly set			
Also available:	RM 4 low profile:		
	Core	B65803P	209
	Clamp	B65804	210
	Insulating washer	B65804	210
	SMD coil former	B65804	211

B65803 Core


- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	1.9	1.7	mm ⁻¹
l _e	21	22	mm
l _e A _e A _{min}	11	13	mm ²
A _{min}	_	11.3	mm ²
V _e	231	286	mm ³

Approx. weight (per set)

m	1.45	1.65	g

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -A with center hole -N with threaded sleeve
K1	16 ±3%	1.0	24.2	B65803+0016A001
	25 ±3%	0.40	37.8	B65803+0025A001
M33	40 ±3%	0.36	60.4	B65803+0040A033
	63 ±3%	0.18	96	B65803+0063A033
N48	63 ±3%	0.16	96	B65803+0063A048
	100 ±3%	0.10	152	B65803+0100A048
	160 ±3%	0.06	243	B65803+0160A048

¹⁾ Replace the + by the code letter "A" or "N" for the required version.

RM 4	
Core	B65803

Ungapped

A _L value	μ _e	P _V	Ordering code
nH		W/set	-J without center hole
1700 +30/–20%	2290		B65803J0000R045
1900 +30/–20%	2560		B65803J0000R030
2800 +40/–30%	3770		B65803J0000Y035
3700 +40/–30%	4980		B65803J0000Y038
750 +30/–20%	1010	< 0.04 (50 mT, 500 kHz, 100 °C)	B65803J0000R049
1100 +30/–20%	1480	< 0.20 (200 mT, 100 kHz, 100 °C)	B65803J0000R087
1100 +30/–20%	1480	< 0.15 (200 mT, 100 kHz, 100 °C)	B65803J0000R097
	nH 1700 +30/–20% 1900 +30/–20% 2800 +40/–30% 3700 +40/–30% 750 +30/–20% 1100 +30/–20%	nH 1700 +30/-20% 2290 1900 +30/-20% 2560 2800 +40/-30% 3770 3700 +40/-30% 4980 750 +30/-20% 1010 1100 +30/-20% 1480	nH W/set 1700 +30/-20% 2290 1900 +30/-20% 2560 2800 +40/-30% 3770 3700 +40/-30% 4980 750 +30/-20% 1010 < 0.04 (50 mT, 500 kHz, 100 °C) 1100 +30/-20% 1480 < 0.20 (200 mT, 100 kHz, 100 °C)

Accessories B65804

Coil former

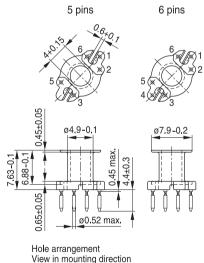
Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

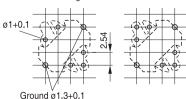
H

max. operating temperature 180 °C), color code white

Bakelite UP 3420® [E61040 (M)], HEXION SPECIALTY CHEMICALS GMBH

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 171

Pins squared in the start-of-winding area.

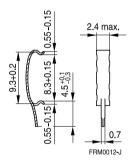
For matching clamp and insulating washers see page 207.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	7.7	20	89	5 6	B65804P1005D001 B65804D1006D001

FRM0334-Y-E

Accessories B65804, B65806

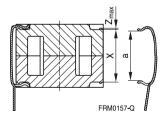
Clamp


- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.3 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65806B2203X000
Insulating washer (bulk)	B65804C2005X000

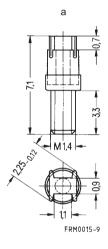

Clamp

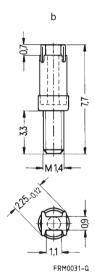
Insulating washer

Clamping forces for RM 4

 F_{min} : Extension of clamp from a to $a_2 = X_{min}$ F_{max} : Extension of clamp from a to $a_1 = X_{max}$

Clamp opening a (mm)	8.3 +0.15	
Core nose Z _{max} (mm)	0.15	
Height of core pair X (m	8.75	
	X_{max}	9.25
Clamping force F (N)	F_{min}	5
	F _{min} F _{max}	40




Accessories B65539, B65806

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

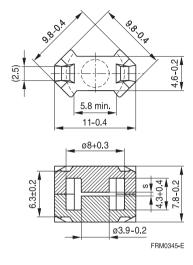
Figure	Tube core		Ordering code	
	Ø x length (mm)	Material	Color code	
а	1.81 × 2.0	K1	yellow	B65539C1003X001
а	1.81 × 2.7	N22	red	B65539C1002X022
b	1.81 × 3.4	N22	green	B65806C3001X022

RM 4 »Low Profile«

Core B65803P

- To IEC 62317-4
- For compact transformers with high inductance
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 1.2 \text{ mm}^{-1}$

 $I_e = 17.3 \text{ mm}$

 $A_{e} = 14.5 \text{ mm}^2$ $A_{min} = 11.3 \text{ mm}^2$

 $V_{\rm p} = 251 \, \rm mm^3$

Approx. weight 1.2 g/set

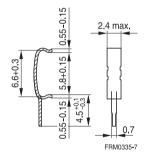
Ungapped

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
T38	5000 +40/-30%	4750		B65803P0000Y038
N49	950 +30/–20%	900	< 0.04 (50 mT, 500 kHz, 100 °C)	B65803P0000R049
N92	1000 +30/–20%	950	< 0.14 (200 mT, 100 kHz, 100 °C)	B65803P0000R092
N87	1300 +30/–20%	1230	< 0.12 (200 mT, 100 kHz, 100 °C)	B65803P0000R087

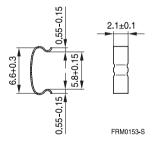
RM 4 »Low Profile«

Accessories for PTH applications

B65804


Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick, Without ground terminal, made of stainless spring steel, 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Clamping force 40 N per pair of clamps (typical value)
- Also available as strip clamp on reels on request


Insulating washer for double-clad PCBs

	Ordering code
Clamp with ground terminal (ordering code per piece, 2 are required)	B65804P2203X000
Clamp without ground terminal (ordering code per piece, 2 are required)	B65804P2204X000
Insulating washer (bulk)	B65804C2005X000

Clamp with ground terminal

Clamp without ground terminal

Insulating washer

RM 4 »Low Profile«

B65804 **Accessories**

SMD coil former with J terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Vectra C 130 [E83005 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see "Processing notes", page 179

Clamp

- Without ground terminal, made of stainless spring steel, 0.3 mm thick
- Also available as strip clamp (each carton containing 2 reels)

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals ¹⁾	Ordering code
1	5.0	20.1	138	10	B65804B6010T001
Clamp	ordering code	B65804P2204X000			

Coil former Clamp 0.55-0.15 8±0.1 ø4.9-0.1 2.1±0.1 ø4+0.15 0.55-0.15 11.6±0.2 17 - 0.3FRM0153-S) 11 4 1 4.6+0.2 Recommended PCB layout 2.5 14 FRM0258-5

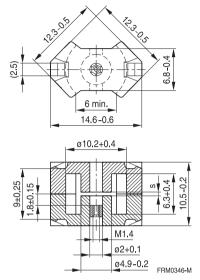
04/13

^{1) 6} and 8 terminals on request

Core and accessories

Fig	Individual parts	Part no.	Page
U	Adjusting screw	B65539	
		B65806	219
	Core	B65805	213
	Clamps	B65806	216
	Insulating washer 1	B65806	216
	modicality washer t	200000	2.0
	Coil former	B65806	215
	Core	B65805	213
<u> </u>	Threaded sleeve (glued-in)		
220	Insulating washer 2	B65806	216
FRM0005-2	?		
Example of an assembly set			
Also available:	SMD coil formers	B65822	217, 218
	Clamps	B65806	217, 218
	RM 5 low profile:		
	Core	B65805P	220
		, _ 555551	

Core B65805


- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	1.0	0.93	mm ⁻¹
l _e	20.8	22.1	mm
A _e	20.8	23.8	mm ²
A _{min}	_	18	mm ²
V _e	433	526	mm ³

Approx. weight (per set)

m	2.9	3.0	g

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -C with center hole -N with threaded sleeve
K1	25 ±3%	1.0	19.9	B65805+0025A001
	40 ±3%	0.40	31.8	B65805+0040A001
M33	63 ±3%	0.4	50.2	B65805+0063A033
	100 ±3%	0.2	79.6	B65805+0100A033
N48	160 ±3%	0.12	127	B65805+0160A048
	250 ±3%	0.06	199	B65805+0250A048
	315 ±3%	0.03	251	B65805+0315A048

¹⁾ Replace the + by the code letter "C" or "N" for the required version.

RM 5	
Core	B65805

Ungapped

Material	A _L value	μ_{e}	P _V	Ordering code -C with center hole
	nH		W/set	-J without center hole
N48	1800 +30/–20%	1430		B65805C0000R048
N45	2600 +30/–20%	1920		B65805J0000R045
N30	3500 +30/–20%	2590		B65805J0000R030
T38	6700 +40/–30%	4950		B65805J0000Y038
T66	9600 +40/–30%	7090		B65805J0000Y066
N49	1300 +30/–20%	960	< 0.06 (50 mT, 500 kHz, 100 °C)	B65805J0000R049
N87	2000 +30/–20%	1480	< 0.32 (200 mT, 100 kHz, 100 °C)	B65805J0000R087
N97	2000 +30/–20%	1480	< 0.24 (200 mT, 100 kHz, 100 °C)	B65805J0000R097
N41	2600 +30/–20%	1920	< 0.10 (200 mT, 100 kHz, 100 °C)	B65805J0000R041

RM₅

Accessories B65806

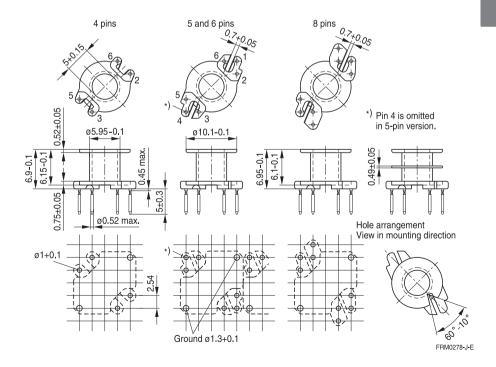
Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code white

Bakelite UP 3420® [E61040 (M)], HEXION SPECIALTY CHEMICALS GMBH

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

Pins squared in the start-of-winding area.

For matching clamps and insulating washers see page 216.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	9.5	25	90	4 5 6 8	B65806P1004D001 B65806P1005D001 B65806P1006D001 B65806P1008D001
2	8.7	25	94	6	B65806P1006D002

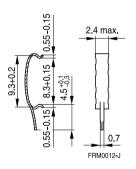
Accessories B65806

Clamp

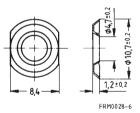
- With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer 1 between core and coil former

- For tolerance compensation and for insulation
- Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

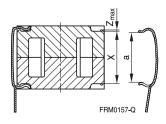

Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E


120 °C), 0.25 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65806B2203X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65806A5000X000
Insulating washer 2 (bulk)	B65806D2005X000

Clamp


Insulating washer 1 (preliminary data)

Insulating washer 2

Clamping forces for RM 5

 F_{min} : Extension of clamp from a to $a_2 = X_{min}$ F_{max} : Extension of clamp from a to $a_1 = X_{max}$

Clamp opening a (mm)	8.3 +0.15	
Core nose Z _{max} (mm)	0.15	
Height of core pair X (m	8.75 9.25	
Clamping force F (N)	F _{min} F _{max}	5 40

B65822, B65806 **Accessories**

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

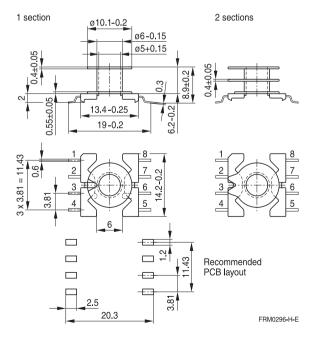
max. operating temperature 155 °C), color code black

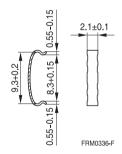
Vectra C 130 [E83005 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s


Winding: see "Processing notes", page 179


Clamp

- Without ground terminal, made of stainless spring steel, 0.335 mm thick
- Also available as strip clamp (each carton containing 2 reels) on request

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	11.1	25	77	8	B65822F1008T001
2	10.2	25	85	8	B65822F1008T002
Clamp (B65806J2204X000				

Coil former Clamp

Please read Important notes on page 2 and Cautions and warnings on page 609.

Accessories B65822, B65806

SMD coil former with J terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Vectra C 130 [E83005 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

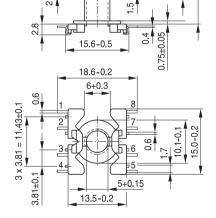
Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

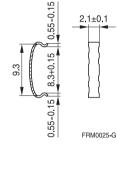
permissible soldering temperature for wire-wrap connection on coil former: 400 °C,1 s

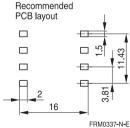
Winding: see "Processing notes", page 179

Clamp

- Without ground terminal, made of stainless spring steel, 0.335 mm thick
- Also available as strip clamp (each carton containing 2 reels) on request

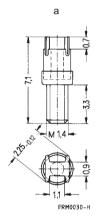

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	11.1	25	73	8	B65822J1008T001
Clamp (ordering code	B65806J2204X000			

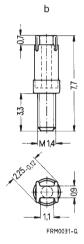

Coil former Clamp


1.2 9.8±0.1 7.1±0.1

6.15-0.1

ø5.95-0.15




Accessories B65539, B65806

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core			Ordering code
	Ø x length (mm)	Material	Color code	
а	1.81 × 2.0	K1	yellow	B65539C1003X001
а	1.81 × 2.7	N22	red	B65539C1002X022
b	1.81 × 3.4	N22	green	B65806C3001X022

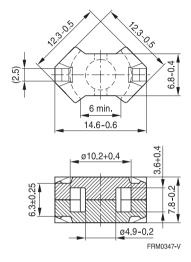
RM 5 »Low Profile«

Core B65805P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.71 \text{ mm}^{-1}$


= 17.5 mm

 $A_e = 24.5 \text{ mm}^2$

 $A_{min} = 18 \text{ mm}^2$

 $V_e = 430 \text{ mm}^3$

Approx. weight 2.6 g/set

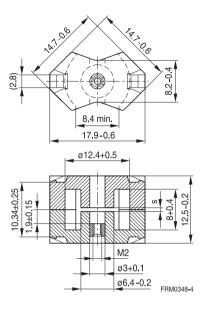
Material	A _L value	μ _e	P_{V}	Ordering code
	nH		W/set	
T38 ¹⁾	7700 +40/–30%	4380		B65805P0000Y038
N49	1700 +30/–20%	970	< 0.09 (50 mT, 500 kHz, 100 °C)	B65805P0000R049
N92	1900 +30/–20%	1080	< 0.29 (200 mT, 100 kHz, 100 °C)	B65805P0000R092
N87	2400 +30/–20%	1360	< 0.26 (200 mT, 100 kHz, 100 °C)	B65805P0000R087

¹⁾ Preliminary data

Core and accessories

	Individual parts	Part no.	Page
	—— Adjusting screw	B65659	230
	Core	B65807	222
	—— Clamps	B65808	228
	—— Insulating washer 1	B65808	228
	Coil former	B65808	224, 225
	— Core	B65807	222
	Threaded sleeve (glued-in)		
FRM0048-K	— Insulating washer 2	B65808	228
Example of an assembly set			
Also available:	Coil former for SMPS transf. Coil former for	B65808	226
	power applications	B65808	227
	SMD coil former	B65821	229
	Clamp	B65808	229
	RM 6 low profile:		
	Core	B65807P	231

Core B65807


- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with	without	
	center hole	center hole	
ΣΙ/Α	0.86	0.78	mm-1
l _e	26.9	28.6	mm
A _e	31.3	36.6	mm ²
A_{min}	_	31	mm ²
V _e	840	1050	mm ³

Approx. weight (per set)

m	4.9	5.1	g

Gapped

Material	A _L value	s approx. mm	μ _e	Ordering code 1) -J without center hole -N with threaded sleeve -C with center hole
K1	40 ±3%	0.80	27.4	B65807+0040A001
M33	63 ±3% 100 ±3%	0.60 0.38	43.2 68.5	B65807+0063A033 B65807+0100A033
N48	160 ±3% 250 ±3% 315 ±3% 400 ±3%	0.22 0.12 0.08 0.05	109 171 215 274	B65807+0160A048 B65807+0250A048 B65807+0315A048 B65807+0400A048
N41	250 ±3%	0.17	155	B65807J0250A041

¹⁾ Replace the + by the code letter "C" or "N" for the required version. Standard version is "C".

RM 6	
Core	B65807

Material	A _L value	μ _e	P _V W/set	Ordering code -C with center hole -J without center hole
			VV/36t	
N48	2200 +30/–20%	1500		B65807C0000R048
N45	3500 +30/–20%	2180		B65807J0000R045
N30	4300 +30/–20%	2670		B65807J0000R030
T35	6200 +30/–20%	3860		B65807J0000R035
T38	8600 +40/–30%	5350		B65807J0000Y038
T66	12300 +40/–30%	7650		B65807J0000Y066
N49	1700 +30/–20%	1060	< 0.15 (50 mT, 500 kHz, 100 °C)	B65807J0000R049
N87	2400 +30/–20%	1490	< 0.51 (200 mT, 100 kHz, 100 °C)	B65807J0000R087
N97	2400 +30/–20%	1490	< 0.39 (200 mT, 100 kHz, 100 °C)	B65807J0000R097
N41	3100 +30/–20%	1930	< 0.16 (200 mT, 25 kHz, 100 °C)	B65807J0000R041

Accessories B65808

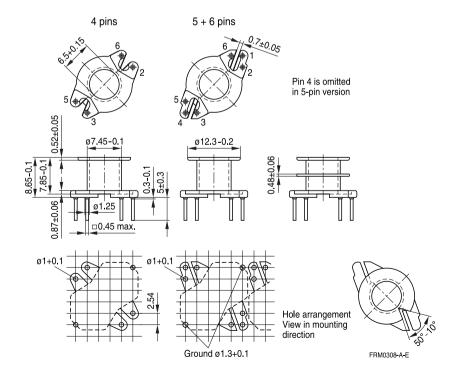
Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washers see page 228.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	15	30	69	4 5 6	B65808N1004D001 B65808N1005D001 B65808N1006D001
2	14	30	73	4 6	B65808N1004D002 B65808N1006D002

Accessories B65808

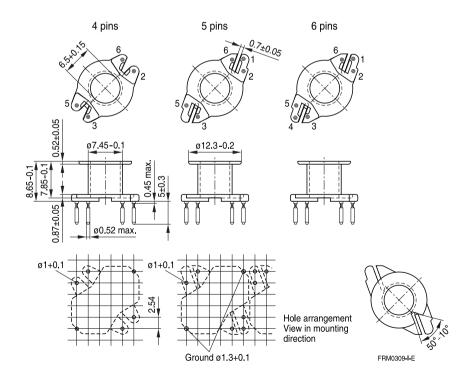
Coil former, pins squared in the start-of-winding area

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code white

Bakelite UP 3420® [E61040 (M)], HEXION SPECIALTY CHEMICALS GMBH


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washers see page 228.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	15	30	69	4	B65808P1004D001
				5	B65808P1005D001
				6	B65808P1006D001

Accessories B65808

Coil former for SMPS transformers with line isolation

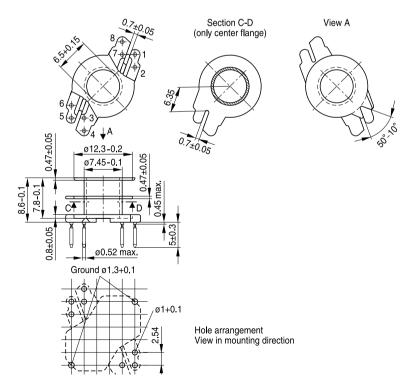
The creepage distances and clearances are designed such that the coil former is suitable for use in SMPS transformers with line isolation.

- Closed center flange with external wire guide
- Pins squared in the start-of-winding area
- Optimized for use with automatic winding machines

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black


Sumikon PM 9630° [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
2	14	30	73	8	B65808S1108D002

Accessories B65808

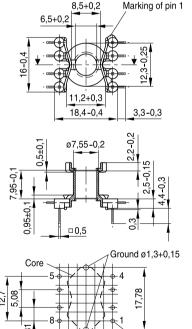
Coil former for power applications with angled pins

Optimized for automatic winding

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washer 1 see page 228.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	15	30	69	8	B65808E1508T001

Hole arrangement View in mounting direction

FRM0298-Y

15,24

ø1+0.15

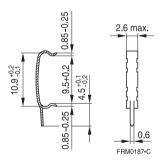
Accessories B65808

Clamp

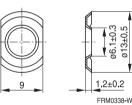
- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer 1 between core and coil former

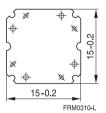
- For tolerance compensation and for insulation
- Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH


Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E


120 °C), 0.25 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65808B2203X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65808A5000X000
Insulating washer 2 (bulk)	B65808C2005X000


Clamp

Insulating washer 1 (preliminary data)

Insulating washer 2

Clamping forces for RM 6

 F_{min} : Extension of clamp from a to $a_2 = X_{min}$ F_{max} : Extension of clamp from a to $a_1 = X_{max}$

Clamp opening a (mm)		9.5 +0.2
Core nose Z _{max} (mm)		0.22
Height of core pair X (m	10.1 10.6	
Clamping force F (N)	F _{min} F _{max}	7 50

B65821, B65808 **Accessories**

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

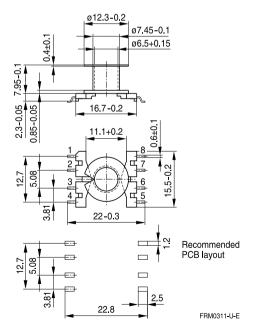
> F
>
> max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD

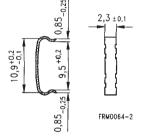
Vectra E 130i [E83005 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s


Winding: see "Processing notes", page 179

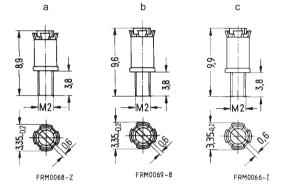

Clamp

- Without ground terminal, made of stainless spring steel, 0.435 mm thick
- Also available as strip clamp on request

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	16.2 31		66	8	B65821C1008T001
Clamp (ordering code per piece, 2 are required)				B65808J2204X000	

Coil former Clamp

04/13



Accessories B65659

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core			Ordering code
	Ø x length (mm)	Material	Color code	
а	2.62 × 3.6	N22	red	B65659F0001X023
b	2.75 × 4.4	N22	black	B65659F0003X023
С	2.82 × 4.4	N22	yellow	B65659F0004X023

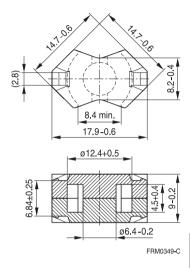
RM 6 »Low Profile«

Core B65807P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.58 \text{ mm}^{-1}$


 $I_{\rm p} = 21.8 \, \rm mm$

 $A_e = 37.5 \text{ mm}^2$

 $A_{min} = 31.2 \text{ mm}^2$

 $V_e = 820 \text{ mm}^3$

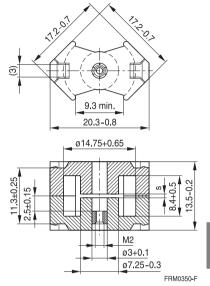
Approx. weight 4.0 g/set

Material	A _L value	μ_{e}	P_V	Ordering code
	nH		W/set	
T38	10500 +40/–30%	4860		B65807P0000Y038
N49	2200 +30/–20%	1020	< 0.14 (50 mT, 500 kHz, 100 °C)	B65807P0000R049
N92	2300 +30/–20%	1060	< 0.44 (200 mT, 100 kHz, 100 °C)	B65807P0000R092
N87	3000 +30/–20%	1390	< 0.40 (200 mT, 100 kHz, 100 °C)	B65807P0000R087

Core and accessories

(Fine)	Individual parts	Part no.	Page
	Adjusting screw	B65659	236
	Core	B65819	233
	- Clamps	B65820	235
	Insulating washer 1	B65820	235
	Coil former	B65820	234
	— Core	B65819	233
	Threaded sleeve (glued-in)		
FRM0050-	Insulating washer 2	B65820	235
Example of an assembly set			
Also available:	RM 7 low profile: Core	B65819P	237

B65819 Core


- To IEC 62317-4
- Core without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.75	0.7	mm ⁻¹
l _e	29.8	30.4	mm
l _e A _e	40	43	mm ²
A _{min}	_	39	mm ²
V _e	1190	1310	mm ³

Approx. weight (per set)

m	6.5	7.2	g

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -A with center hole -N with threaded sleeve -J without center hole
N41	160 ±5%	0.30	90	B65819J0160J041
	250 ±5%	0.18	141	B65819J0250J041
N48	250 ±3%	0.16	148	B65819+0250A048
	315 ±3%	0.12	187	B65819+0315A048

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	-J without center hole
N30	5000 +30/-20%	2810		B65819J0000R030
T38	10000 +40/–30%	5630		B65819J0000Y038
N49	1900 +30/–20%	1070	< 0.22 (50 mT, 500 kHz, 100 °C)	B65819J0000R049
N87	2700 +30/–20%	1520	< 0.77 (200 mT, 100 kHz, 100 °C)	B65819J0000R087
N97	2700 +30/–20%	1520	< 0.58 (200 mT, 100 kHz, 100 °C)	B65819J0000R097

¹⁾ Replace the + by the code letter "A" or "N" for the required version.

Accessories B65820

Coil former

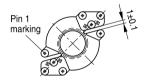
Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

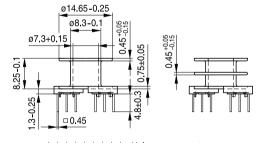
H

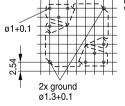
max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 171


Squared pins.

For matching clamp and insulating washers see page 235.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	22.4	36.0	55.4	8	B65820W1008D001
2	21.9	36.0	56.5	8	B65820W1008D002

Hole arrangement View in mounting direction

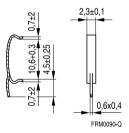
FRM0314-J-E

Accessories B65820

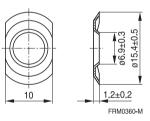
Clamp

- With ground terminal, made of spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

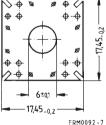
Insulating washer 1 between core and coil former


- For tolerance compensation and for insulation
- Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs


■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.3 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

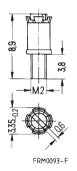
	Ordering code
Clamp (ordering code per piece, 2 are required)	B65820B2001X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65820A5000X000
Insulating washer 2 (bulk)	B65820D2005X000

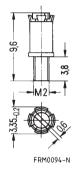

Clamp

Insulating washer 1 (preliminary data)

Insulating washer 2

FR110092 -


Accessories B65659


Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core Ø × length (mm)	Material	Ordering code	
а	2.62 × 3.6	N22	red	B65659F0001X023
b	2.75 × 4.4	N22	black	B65659F0003X023

а

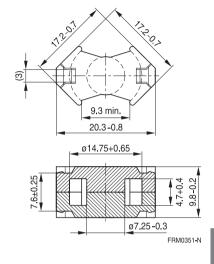
b

RM 7 »Low Profile«

Core B65819P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.52 \text{ mm}^{-1}$

= 23.5 mm

 $A_e = 45.3 \text{ mm}^2$

 $A_{min} = 39.6 \text{ mm}^2$ $V_e = 1060 \text{ mm}^3$

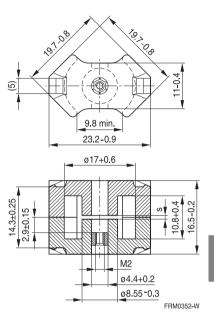
Approx. weight 5.7 g/set

Material	A _L value	μ _e	P_V	Ordering code
	nH		W/set	
T38	11500 +40/-30%	4750		B65819P0000Y038
N49	2400 +30/–20%	990	< 0.21 (50 mT, 500 kHz, 100 °C)	B65819P0000R049
N92	2600 +30/–20%	1070	< 0.63 (200 mT, 100 kHz, 100 °C)	B65819P0000R092
N87	3300 +30/–20%	1360	< 0.57 (200 mT, 100 kHz, 100 °C)	B65819P0000R087

Core and accessories

c#2	Individual parts	Part no.	Page
	- Adjusting screw	B65812	246
	- Core	B65811	239
	- Clamps	B65812	245
	- Insulating washer 1	B65812	245
	- Coil former	B65812	241, 242
	- Core	B65811	239
	- Threaded sleeve (glued-in)		
200	- Insulating washer 2	B65812	245
FRM0051- Example of an assembly set	5		
Also available:	Coil former for SMPS transformers	B65812	243
	Coil former for power applications	B65812	244
	RM 8 low-profile:		
	Core	B65811P	247
	Clamp	B65812	248
	Insulating washers 1 + 2	B65812	248

B65811 Core


- To IEC 62317-4
- Cores without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with	without	
	center hole	center hole	
ΣΙ/Α	0.68	0.59	mm ⁻¹
l _e	35.1	38	mm
l _e A _e A _{min}	52	64	mm ²
A_{min}	_	55	mm ²
V _e	1825	2430	mm ³

Approx. weight (per set)

m	10.7	12	g

Gapped

Material	A _L value	s	μ_{e}	Ordering code ¹⁾ -D with center hole
	nH	approx.		-F with threaded sleeve -J without center hole
N48	250 ± 3%	0.23	134	B65811+0250A048
	315 ± 3%	0.17	169	B65811+0315A048
	400 ± 3%	0.14	215	B65811+0400A048
	630 ± 5%	0.10	338	B65811+0630J048
N41	160 ± 3%	0.49	76	B65811J0160A041
	250 ± 5%	0.24	118	B65811J0250J041
	630 ± 5%	0.11	298	B65811J0630J041
	1600 ±10%	0.04	756	B65811J1600K041
N87	250 ± 3%	0.30	118	B65811J0250A087
	400 ± 3%	0.18	189	B65811J0400A087

¹⁾ Replace the + by the code letter "F" or "D" for the required version. Standard version is "D".

RM 8	
Core	B65811

Material	A _L value	μ _e	P _V	Ordering code -D with center hole
	nH		W/set	-J without center hole
N48	2900 +30/–20%	1550		B65811D0000R048
N30	5700 +30/–20%	2690		B65811J0000R030
T38	12500 +40/-30%	5910		B65811J0000Y038
N49	2200 +30/–20%	1040	< 0.37 (50 mT, 500 kHz, 100 °C)	B65811J0000R049
N87	3300 +30/–20%	1560	< 1.20 (200 mT, 100 kHz, 100 °C)	B65811J0000R087
N97	3300 +30/–20%	1560	< 1.00 (200 mT, 100 kHz, 100 °C)	B65811J0000R097
N41	4100 +30/–20%	1940	< 0.37 (200 mT, 25 kHz, 100 °C)	B65811J0000R041

Accessories B65812

Coil former, squared pins

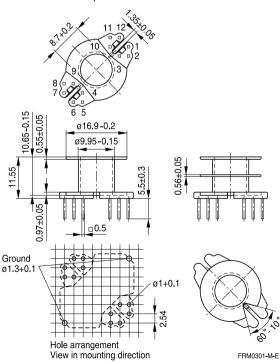
Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washers see page 245.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	30	42	47	5 8 12	B65812N1005D001 B65812N1008D001 B65812N1012D001
2	28.4	42	50	5 12	B65812N1005D002 B65812N1012D002

12 pins

Version	Pins omitted
5 pins	3, 4, 6, 7, 9, 10, 12
8 pins	3, 4, 9, 10

Accessories B65812

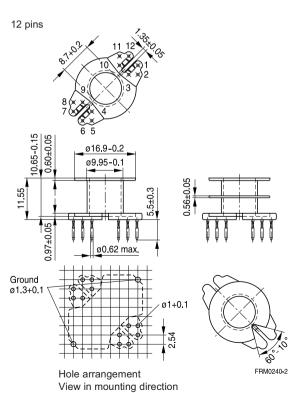
Coil former, pins squared in the start-of-winding area

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code white

Bakelite UP 3420® [E61040 (M)], HEXION SPECIALTY CHEMICALS GMBH


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washers see page 245.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	30	42	47	5 8 12	B65812P1005D001 B65812P1008D001 B65812P1012D001
2	28.4	42	50	8	B65812P1008D002

Version	Pins omitted
5 pins	3, 4, 6, 7, 9, 10, 12
8 pins	3 4 9 10

Accessories B65812

Coil former for SMPS transformers with line isolation

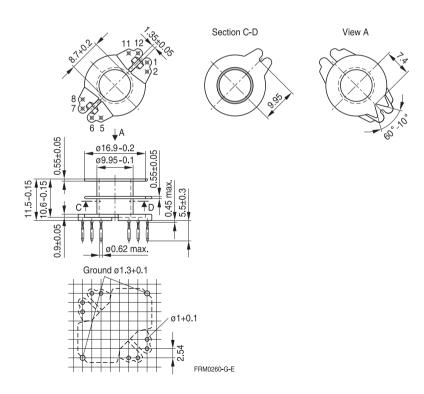
The creepage distances and clearances are designed such that the coil former is suitable for use in SMPS transformers with line isolation.

- Closed center flange with external wire guide
- Pins squared in the start-of-winding area
- Optimized for use with automatic winding machines

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 180 °C), color code black


Sumikon PM 9630° [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
2	28.4	42	50	8	B65812S1108D002

Accessories B65812

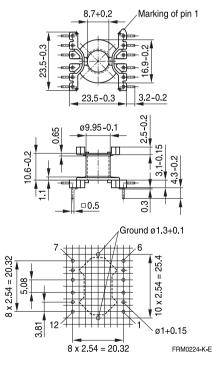
Coil former for power applications

Optimized for automatic winding

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washer 1 see page 245.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	30	42	47	12	B65812C1512T001

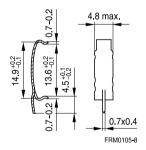
Hole arrangement View in mounting direction (Note half pitch!)

Accessories B65812

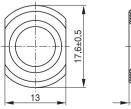
Clamp

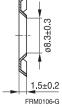
- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer 1 between core and coil former


- For tolerance compensation and for insulation
- Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs

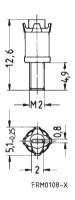

Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG


	Ordering code
Clamp (ordering code per piece, 2 are required)	B65812A2203X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65812A5000X000
Insulating washer 2 (bulk)	B65812C2005X000

Clamp

Insulating washer 1 (preliminary data)

Insulating washer 2



Accessories B65812

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

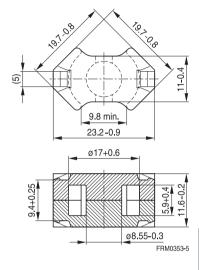
Tube core ∅ × length (mm) Material Color code			Ordering code
3.85 × 5.0	N22	gray	B65812B3003X022

RM 8 »Low Profile«

Core B65811P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.44 \text{ mm}^{-1}$

 $I_{o} = 28.7 \text{ mm}$

 $A_e = 64.9 \text{ mm}^2$

 $A_{min} = 55.4 \text{ mm}^2$ $V_e = 1860 \text{ mm}^3$

Approx. weight 9.2 g/set

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
N49	2900 +30/–20%	1020	< 0.33 (50 mT, 500 kHz, 100 °C)	B65811P0000R049
N92	3100 +30/–20%	1090	< 1.10 (200 mT, 100 kHz, 100 °C)	B65811P0000R092
N87	4100 +30/–20%	1440	< 0.92 (200 mT, 100 kHz, 100 °C)	B65811P0000R087

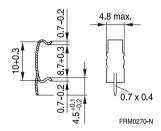
RM 8 »Low Profile«

Accessories B65812

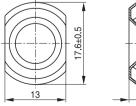
Clamp

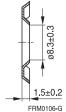
- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer 1 between core and coil former

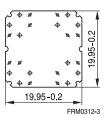

- For tolerance compensation and for insulation
- Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH

Insulating washer 2 for double-clad PCBs


Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG


	Ordering code
Clamp (ordering code per piece, 2 are required)	B65812P2203X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65812A5000X000
Insulating washer 2 (bulk)	B65812C2005X000

Clamp



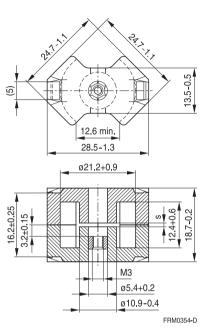
Insulating washer 1 (preliminary data)

Insulating washer 2

Core and accessories

c = 2	Individual parts	Part no.	Page
	Adjusting screw	B65679	255
	Core	B65813	250
	Clamps	B65814	254
	Insulating washer 1	B65814	254
	Coil former	B65814	252
	Core	B65813	250
	Threaded sleeve (glued-in)		
FRM0053-L	Insulating washer 2	B65814	254
Example of an assembly set			
Also available:	Coil former for power applications	B65814	253
	RM 10 low-profile: Core	B65813P	256

B65813 Core


- To IEC 62317-4
- Cores without center hole for transformer applications
- Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.5	0.45	mm ⁻¹
l _e	42	44	mm
A _e	83	98	mm ²
l _e A _e A _{min}	_	90	mm ²
V _e	3490	4310	mm ³

Approx. weight (per set)

m	20.7	22	g

Gapped

Material	A _L value	s	μ _e	Ordering code ¹⁾
				-D with center hole
		approx.		-N with threaded sleeve
	nH	mm		-J without center hole
N48	400 ± 3%	0.21	161	B65813+0400A048
	630 ± 3%	0.13	254	B65813+0630A048
N41	250 ± 3%	0.44	89	B65813J0250A041
	630 ± 5%	0.13	225	B65813J0630J041
	1600 ±10%	0.04	572	B65813J1600K041

¹⁾ Replace the + by the code letter "D" or "N" for the required version.

RM 10	
Core	B65813

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	-J without center hole
N30	7600 +30/–20%	2720		B65813J0000R030
T38	16000 +40/–30%	5720		B65813J0000Y038
N49	2900 +30/–20%	1040	< 0.75 (50 mT, 500 kHz,100 °C)	B65813J0000R049
N87	4200 +30/–20%	1500	< 2.30 (200 mT, 100 kHz, 100 °C)	B65813J0000R087
N97	4200 +30/–20%	1500	< 2.00 (200 mT, 100 kHz, 100 °C)	B65813J0000R097
N41	5500 +30/-20%	1960	< 0.80 (200 mT, 25 kHz, 100 °C)	B65813J0000R041

Accessories B65814

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

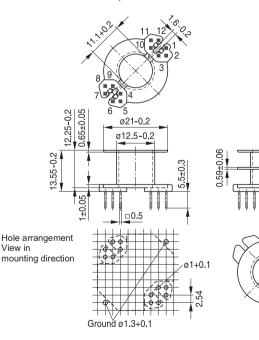
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Windina: see "Processing notes", page 171

Squared pins.

For matching clamp and insulating washers see page 254.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	41.5	52	43	8 12	B65814N1008D001 B65814N1012D001
2	39	52	46	8 12	B65814N1008D002 B65814N1012D002


Pins omitted

2, 5, 8, 11

Version

8 pins

12 pins

04/13

FRM0271-W-E

Accessories B65814

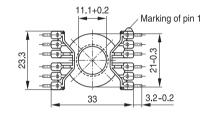
Coil former for power applications

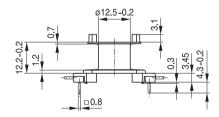
Optimized for automatic winding

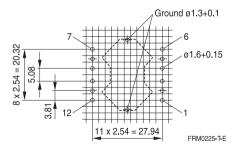
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 171

For matching clamp and insulating washer 1 see page 254.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	41.5	52	43	12	B65814C1512T001

Hole arrangement
View in mounting direction
(Note half pitch!)

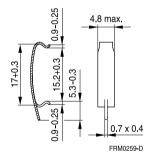
Accessories B65814

Clamp

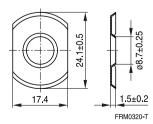
- With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s
- Also available as strip clamp on reels on request

Insulating washer 1 between core and coil former

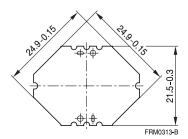
- For tolerance compensation and for insulation
- Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH


Insulating washer 2 for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E

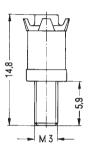

120 °C), 0.25 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65814B2203X000
Insulating washer 1 (reel packing, PU = 1 reel)	B65814B5000X000
Insulating washer 2 (bulk)	B65814B2005X000


Clamp

Insulating washer 1 (preliminary data)

Insulating washer 2



Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

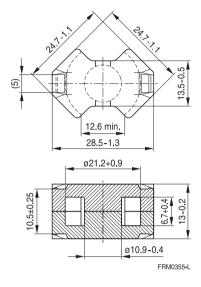
Tube core			Ordering code
$\emptyset \times \text{length (mm)}$	Material	Color code	
4.55 × 6.3	N22	red	B65679E0003X022
4.98 × 6.3	N22	black	B65679E0002X022

RM 10 »Low Profile«

Core B65813P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

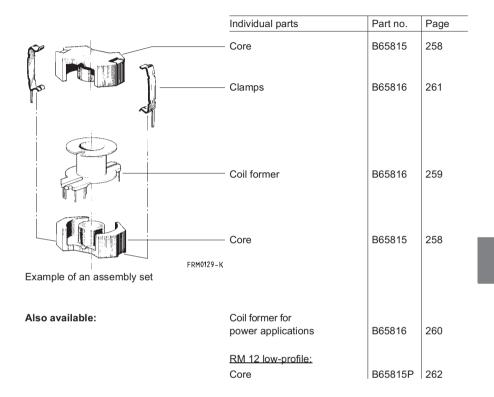
Magnetic characteristics (per set)


 $\Sigma I/A = 0.34 \text{ mm}^{-1}$

 $I_{\rm p} = 33.9 \, \rm mm$

 $A_e = 99.1 \text{ mm}^2$

 $A_{min} = 90.0 \text{ mm}^2$ $V_{R} = 3360 \text{ mm}^3$


Approx. weight 17.2 g/set

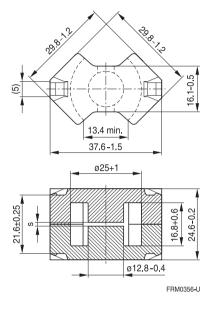
Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N49	3700 +30/–20%	1000	< 0.62 (50 mT, 500 kHz, 100 °C)	B65813P0000R049
N92	4000 +30/–20%	1090	< 1.90 (200 mT, 100 kHz, 100 °C)	B65813P0000R092
N87	5200 +30/-20%	1410	< 1.72 (200 mT, 100 kHz, 100 °C)	B65813P0000R087

Core and accessories

Core B65815

- To IEC 62317-4
- Optimized core cross section and increased thickness of base for power applications
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.39 \text{ mm}^{-1}$ I₂ = 57 mm

 $A_{\rm e} = 57 \, \text{mm}$ $A_{\rm e} = 146 \, \text{mm}^2$

 $A_{min} = 125 \text{ mm}^2$

 $V_e^{11111} = 8320 \text{ mm}^3$

Approx. weight 45 g/set

Gapped

Material	A _L value	s	μ_{e}	Ordering code
		approx.		
	nH	mm		-E without center hole
N41	160 ±3%	1.30	50	B65815E0160A041
	250 ±3%	0.70	78	B65815E0250A041
	400 ±5%	0.35	124	B65815E0400J041
	1000 ±5%	0.12	311	B65815E1000J041

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	-E without center hole
N30	8700 +30/–20%	2700		B65815E0000R030
N49	3700 +30/–20%	1150	< 1.41 (50 mT, 500 kHz, 100 °C)	B65815E0000R049
N87	5300 +30/–20%	1640	< 4.50 (200 mT, 100 kHz, 100 °C)	B65815E0000R087
N97	5300 +30/–20%	1640	< 3.60 (200 mT, 100 kHz, 100 °C)	B65815E0000R097
N41	6000 +30/–20%	1860	< 1.50 (200 mT, 25 kHz, 100 °C)	B65815E0000R041

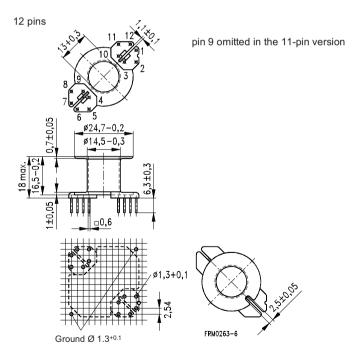
Accessories B65816

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

Squared pins.

For matching clamp see page 261.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	73	61	28.7	12 11	B65816N1012D001 B65816N1011D001

Hole arrangement View in mounting direction

Accessories B65816

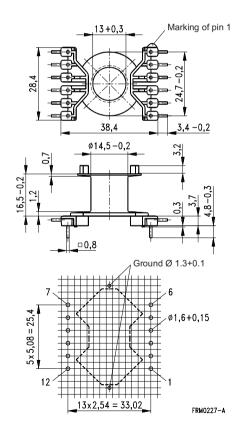
Coil former for power applications

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

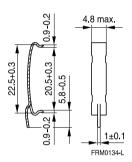
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp see page 261.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	72	61	28.7	12	B65816C1512T001

Hole arrangement View in mounting direction (Note half pitch!)



Accessories B65816

Clamp

- With ground terminal, made of spring steel (tinned), 0.45 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65816A2002X000

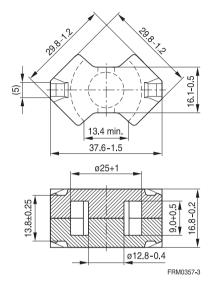
RM 12 »Low Profile«

Core B65815P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.29 \text{ mm}^{-1}$


l_e = 42 mm

 $\tilde{A}_{e} = 147.5 \text{ mm}^2$

 $A_{min} = 124.7 \text{ mm}^2$

 $V_e = 6195 \text{ mm}^3$

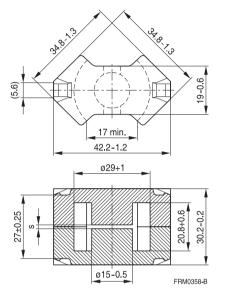
Approx. weight 33.6 g/set

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
N49	4500 +30/–20%	1020	< 1.21 (50 mT, 500 kHz, 100 °C)	B65815P0000R049
N92	4800 +30/–20%	1090	< 3.70 (200 mT, 100 kHz, 100 °C)	B65815P0000R092
N87	6300 +30/–20%	1430	< 3.36 (200 mT, 100 kHz, 100 °C)	B65815P0000R087

Core and accessories

	Individual parts	Part no.	Page
	Core	B65887	264
	Clamps	B65888	267
	Coil former	B65888	265
	Core	B65887	264
FRM0129-K	Insulating washer	B65888	267
Example of an assembly set			
Also available:	Coil former for power applications	B65888	266
	RM 14 low-profile: Core	B65887P	268

Core B65887


- To IEC 62317-4
- Optimized core cross section and increased thickness of base for power applications
- Without center hole
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.35 \text{ mm}^{-1}$ $I_e = 70 \text{ mm}$ $A_e = 200 \text{ mm}^2$

 $A_{min} = 170 \text{ mm}^2$ $V_e = 14000 \text{ mm}^3$

Approx. weight 74 g/set

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code -E without center hole
N41	160 ±3%	1.90	45	B65887E0160A041
	250 ±3%	1.00	70	B65887E0250A041
	400 ±3%	0.50	111	B65887E0400A041
	1000 ±5%	0.15	279	B65887E1000J041

Material	A _L value	μ _e	P _V	Ordering code -E without center
	nH		W/set	hole
N49	3900 +30/–20%	1090	< 2.37 (50 mT, 500 kHz, 100 °C)	B65887E0000R049
N87	6000 +30/–20%	1670	< 7.40 (200 mT, 100 kHz, 100 °C)	B65887E0000R087
N97	6000 +30/–20%	1670	< 5.60 (200 mT, 100 kHz, 100 °C)	B65887E0000R097
N41	6800 +30/–20%	1890	< 2.52 (200 mT, 25 kHz, 100 °C)	B65887E0000R041

Accessories B65888

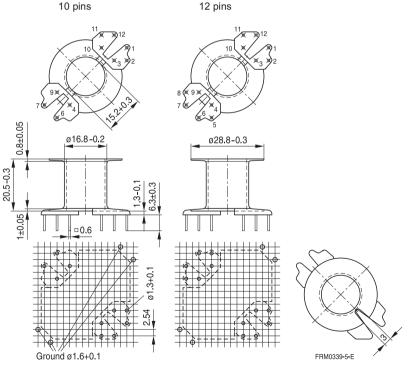
Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

Squared pins.

For matching clamp and insulating washer see page 267.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	107	71.5	23	10 12	B65888N1010D001 B65888N1012D001

Hole arrangement View in mounting direction

Accessories B65888

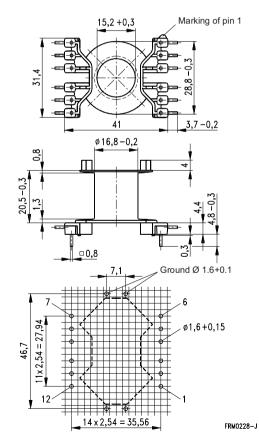
Coil former for power applications

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 171

For matching clamp and insulating washer see page 267.

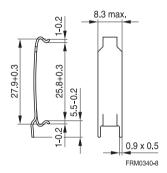
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	106	71.5	23	12	B65888C1512T001

Hole arrangement View in mounting direction (Note half pitch!)

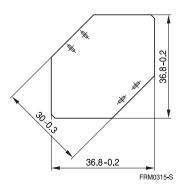
Accessories B65888

Clamp

- With ground terminal, made of stainless spring steel (tinned), 0.5 mm thick
- Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Insulating washer for double-clad PCBs

■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E


120 °C), 0.25 mm thick Makrofol FR7-2, [E118859 (M)], natural color, BAYER MATERIALSCIENCE AG

	Ordering code
Clamp (ordering code per piece, 2 are required)	B65888A2002X000
Insulating washer (bulk)	B65888B2005X000

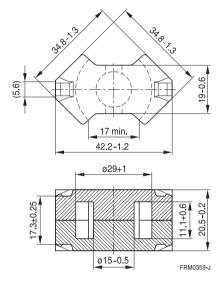
Clamp

Insulating washer

RM 14 »Low Profile«

Core B65887P

- To IEC 62317-4
- For compact transformers
- Without center hole
- Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 0.25 \text{ mm}^{-1}$ I_a = 50.9 mm

 $A_e = 201 \text{ mm}^2$

 $A_{min} = 170 \text{ mm}^2$ $V_e = 10230 \text{ mm}^3$

Approx. weight 55 g/set

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
N49	5100 +30/–20%	1030	< 2.0 (50 mT, 500 kHz, 100 °C)	B65887P0000R049
N92	5400 +30/–20%	1090	< 6.1 (200 mT, 100 kHz, 100 °C)	B65887P0000R092
N87	7100 +30/–20%	1430	< 5.5 (200 mT, 100 kHz, 100 °C)	B65887P0000R087

PQ cores

General information

PQ cores for switch-mode power supplies

These cores are a preferred shape for power conversion. The main advantages compared to conventional round or rectangular E type cores are the optimized round leg and wider outer surface. The round leg reduces winding length and hence copper cost in production and the wider surface area lowers the thermal resistance by offering a larger area for heat dissipation. The shape also provides better shielding to the winding.

EPCOS offers the extended PQ series from PQ16 up to PQ40 and PQ50 in the typical power materials (N87, N97, N95, N49 and N92). PQ cores are supplied in sets. Selected bobbins are also available.

PQ 16/11.6

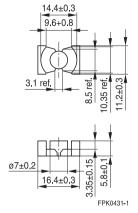
Core B65885A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.641 \text{ mm}^{-1}$


 $I_0 = 27.00 \text{ mm}$

 $A_e = 42.10 \text{ mm}^2$

 $A_{min} = 38.50 \text{ mm}^2$

 $V_e = 1136 \text{ mm}^3$

Approx. weight 6.0 g/set

Dimensions in mm

Material	A _L value ¹⁾ nH	μ _e	P _V W/set	Ordering code
N87	2350 +30/–20%	1200	< 0,70 (200 mT, 100 kHz, 100 °C)	B65885A0000R087
N97	2450 +30/–20%	1250	< 0.60 (200 mT, 100 kHz, 100 °C)	B65885A0000R097
N95	2750 +30/–20%	1400	< 0.65 (200 mT, 100 kHz, 25 °C – 100 °C) < 0.80 (200 mT, 100 kHz, 120 °C)	B65885A0000R095
N92	1900 +30/–20%	970	< 0.70 (200 mT, 100 kHz, 100 °C)	B65885A0000R095
N49	1900 +30/–20%	970	< 0.40 (50 mT, 500 kHz, 100 °C)	B65885A0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 20/16

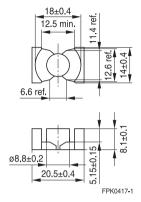
Core B65875B

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.579 \text{ mm}^{-1}$


 $I_0 = 37.0 \text{ mm}$

 $A_e = 64.0 \text{ mm}^2$

 $A_{min} = 57.6 \text{ mm}^2$

 $V_e = 2367 \text{ mm}^3$

Approx. weight 13 g/set

Dimensions in mm

Material	A _L value ¹⁾ nH	μ_{e}	P _V W/set	Ordering code
N87	3100 +30/–20%	1430	< 1.40 (200 mT, 100 kHz, 100 °C)	B65875B0000R087
N97	3200 +30/–20%	1475	< 1.25 (200 mT, 100 kHz, 100 °C)	B65875B0000R097
N95	3750 +30/–20%	1730	< 1.35 (200 mT, 100 kHz, 25 °C – 100 °C) < 1.62 (200 mT, 100 kHz, 120 °C)	B65875B0000R095
N92	2400 +30/–20%	1105	< 1.45 (200 mT, 100 kHz, 100 °C)	B65875B0000R092
N49	2400 +30/–20%	1105	< 0.75 (50 mT, 500 kHz, 100 °C)	B65875B0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 20/20

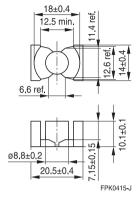
Core B65875A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.718 \text{ mm}^{-1}$


l_o = 45.20 mm

 $A_e = 62.90 \text{ mm}^2$

 $A_{min} = 54.40 \text{ mm}^2$

 $V_e = 2843 \text{ mm}^3$

Approx. weight 15.6 g/set

Dimensions in mm

Material	A _L value ¹⁾	μ_{e}	P _V W/set	Ordering code
	nH		vv/set	
N87	2650 +30/–20%	1515	< 1.65 (200 mT, 100 kHz, 100 °C)	B65875A0000R087
N97	2750 +30/–20%	1565	< 1.50 (200 mT, 100 kHz, 100 °C)	B65875A0000R097
N95	3300 +30/–20%	1860	< 1.60 (200 mT, 100 kHz, 25 °C – 100 °C) < 1.92 (200 mT, 100 kHz, 120 °C)	B65875A0000R095
N49	2000 +30/–20%	1150	< 0.90 (50 mT, 500 kHz, 100 °C)	B65875A0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

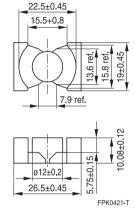
Core B65877B

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.363 \text{ mm}^{-1}$


 $I_0 = 44.4 \text{ mm}$

 $A_e = 122.3 \text{ mm}^2$

 $A_{min} = 108.8 \text{ mm}^2$

 $V_e = 5435 \text{ mm}^3$

Approx. weight 31 g/set

Dimensions in mm

Material	A _L value ¹⁾ nH	μ_{e}	P _V W/set	Ordering code
N87	5000 +30/–20%	1440	< 3.20 (200 mT, 100 kHz, 100 °C)	B65877B0000R087
N97	5150 +30/–20%	1480	< 2.70 (200 mT, 100 kHz, 100 °C)	B65877B0000R097
N95	6300 +30/–20%	1820	< 3.00 (200 mT, 100 kHz, 25 °C $-$ 100 °C) < 3.60 (200 mT, 100 kHz, 120 °C)	B65877B0000R095
N92	3850 +30/-20%	1110	< 3.70 (200 mT, 100 kHz, 100 °C)	B65877B0000R092
N49	3850 +30/–20%	1110	< 1.90 (50 mT, 500 kHz, 100 °C)	B65877B0000R049

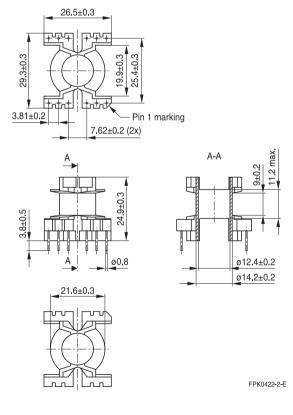
¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

Accessories B65878E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H


max. operating temperature 180 °C), color code black

Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	33	56	58	12	B65878E0012D001

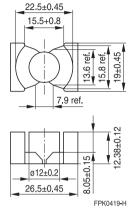
Core B65877A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.440 \text{ mm}^{-1}$


l_o = 53.60 mm

 $A_e = 122.0 \text{ mm}^2$

 $A_{min} = 108.7 \text{ mm}^2$

 $V_e = 6530 \text{ mm}^3$

Approx. weight 36 g/set

Dimensions in mm

Material	A _L value ¹⁾ nH	μ _e	P _V W/set	Ordering code
N87	4500 +30/–20%	1550	< 3.75 (200 mT, 100 kHz, 100 °C)	B65877A0000R087
N97	4650 +30/–20%	1620	< 3.30 (200 mT, 100 kHz, 100 °C)	B65877A0000R097
N95	5700 +30/–20%	1980	< 3.60 (200 mT, 100 kHz, 25 °C – 100 °C) < 4.32 (200 mT, 100 kHz, 120 °C)	B65877A0000R095
N49	3300 +30/–20%	1235	< 2.30 (50 mT, 500 kHz, 100 °C)	B65877A0000R049

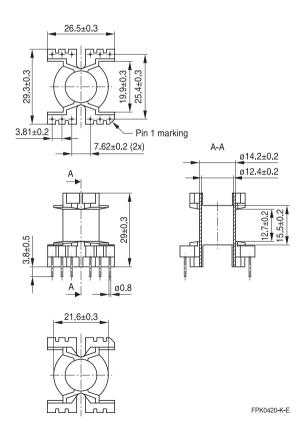
¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

Accessories B65878E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H


max. operating temperature 180 °C), color code black

Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	47	56	41	12	B65878E1012D001

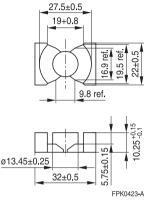
Core B65879A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.314 \text{ mm}^{-1}$


 $I_0 = 46.40 \, \text{mm}$

 $A_e = 154.2 \text{ mm}^2$

 $A_{min} = 127.5 \text{ mm}^2$

 $V_{\rm e} = 7460 \, \rm mm^3$

Approx. weight 41 g/set

Dimensions in mm

Material	A _L value ¹⁾ nH	μ _e	P _V W/set	Ordering code
N87	6300 +30/–20%	1580	< 5.50 (200 mT, 100 kHz, 100 °C)	B65879A0000R087
N97	6500 +30/–20%	1625	< 4.60 (200 mT, 100 kHz, 100 °C)	B65879A0000R097
N95	7600 +30/–20%	1895	< 4.70 (200 mT, 100 kHz, 25 °C – 100 °C) < 5.54 (200 mT, 100 kHz, 120 °C)	B65879A0000R095
N49	4600 +30/–20%	1150	< 2.65 (50 mT, 500 kHz, 100 °C)	B65879A0000R049

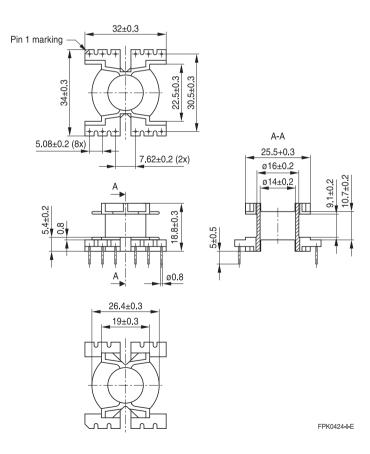
¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

Accessories B65880E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H


max. operating temperature 180 °C), color code black

Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

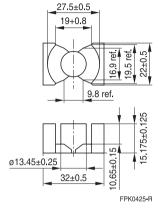
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	47	66	48	12	B65880E0012D001

Core B65879B

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.441 \text{ mm}^{-1}$

 $I_{o} = 67.80 \text{ mm}$

 $A_e = 153.8 \text{ mm}^2$

 $A_{min} = 127.5 \text{ mm}^2$ $V_{e} = 10440 \text{ mm}^3$

Approx. weight 57.4 g/set

Dimensions in mm

Material	A _L value ¹⁾	μ_{e}	P_V	Ordering code
	nH		W/set	
N87	4800 +30/–20%	1700	< 7.00 (200 mT, 100 kHz, 100 °C)	B65879B0000R087
N97	5000 +30/-20%	1760	< 5.80 (200 mT, 100 kHz, 100 °C)	B65879B0000R097
N95	6100 +30/-20%	2140		B65879B0000R095
			< 7.56 (200 mT, 100 kHz, 120 °C)	
N49	3450 +30/–20%	1210	< 3.65 (50 mT, 500 kHz, 100 °C)	B65879B0000R049

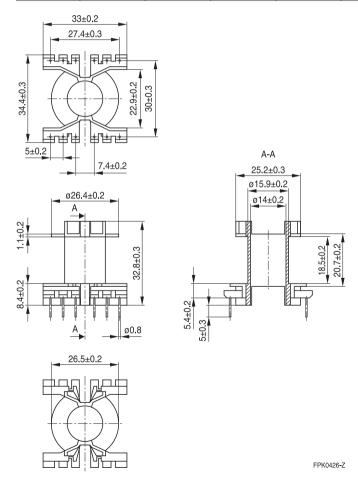
¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

Accessories B65880E

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H


max. operating temperature 180 °C), color code black

Sumikon PM 9820® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	104	62	21	12	B65880E2012D001

PQ 35/35

Core B65881A

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.467 \text{ mm}^{-1}$

l_o = 79.20 mm

 $A_e = 169.7 \text{ mm}^2$

 $A_{min} = 146.5 \text{ mm}^2$

 $V_e = 13440 \text{ mm}^3$

Approx. weight 74 g/set

Dimensions in mm

Mate- rial	A _L value ¹⁾ nH	μ _e	P _V W/set	Ordering code
N87	4500 +30/–20%	1670	< 8.75 (200 mT, 100 kHz, 100 °C)	B65881A0000R087
N97	4700 +30/–20%	1750	< 7.10 (200 mT, 100 kHz, 100 °C)	B65881A0000R097
N95	5700 +30/–20%	2120	< 7.92 (200 mT, 100 kHz, 25 °C – 100 °C) < 9.50 (200 mT, 100 kHz, 120 °C)	B65881A0000R095
N92	3300 +30/–20%	1225	< 10.50 (200 mT, 100 kHz, 100 °C)	B65881A0000R092
N49	3300 +30/–20%	1225	< 3.75 (50 mT, 500 kHz, 100 °C)	B65881A0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 40/30

Core B65883B

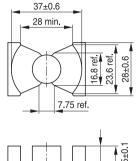
Preliminary data

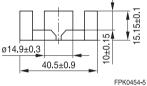
■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.390 \text{ mm}^{-1}$


 $I_0 = 74.10 \text{ mm}$


 $A_e = 190.6 \text{ mm}^2$

 $A_{min} = 159.9 \text{ mm}^2$ $V_{e} = 14120 \text{ mm}^3$

ve 14120111111

Approx. weight 74 g/set

Dimensions in mm

Material	A _L value ¹⁾	μ_{e}	P_V	Ordering code
	nH		W/set	
N87	5200 +30/–20%	1615	< 1.50 (100 mT, 100 kHz, 100 °C)	B65883B0000R087
N97	5300 +30/–20%	1650	< 1.40 (100 mT, 100 kHz, 100 °C)	B65883B0000R097
N95	6500 +30/–20%	2020	< 1.56 (100 mT, 100 kHz, 25 °C) < 1.45 (100 mT, 100 kHz, 50 °C – 100 °C)	B65883B0000R095
			< 1.70 (100 mT, 100 kHz, 120 °C)	
N92	3900 +30/–20%	1210	< 2.50 (100 mT, 100 kHz, 100 °C)	B65883B0000R092
N49	3900 +30/–20%	1210	< 3.80 (50 mT, 500 kHz, 100 °C)	B65883B0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 40/40

Core B65883A

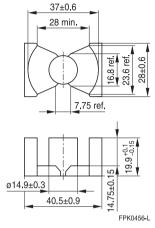
Preliminary data

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.490 \text{ mm}^{-1}$


l_o = 92.50 mm

 $A_e = 188.3 \text{ mm}^2$

 $A_{min} = 159.9 \text{ mm}^2$

 $V_e = 17430 \text{ mm}^3$

Approx. weight 90 g/set

Dimensions in mm

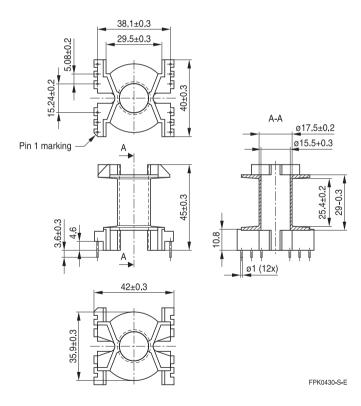
Material	A _L value ¹⁾ nH	μ _e	P _V W/set	Ordering code
N87	4300 +30/–20%	1680	< 1.80 (100 mT, 100 kHz, 100 °C)	B65883A0000R087
N97	4500 +30/–20%	1755	< 1.65 (100 mT, 100 kHz, 100 °C)	B65883A0000R097
N95	5500 +30/–20%	2145	< 1.95 (100 mT, 100 kHz, 25 °C) < 1.75 (100 mT, 100 kHz, 50 °C – 100 °C) < 2.10 (200 mT, 100 kHz, 120 °C)	B65883A0000R095
N92	3200 +30/–20%	1250	< 3.10 (100 mT, 100 kHz, 100 °C)	B65883A0000R092
N49	3200 +30/-20%	2145	< 4.80 (50 mT, 500 kHz, 100 °C)	B65883A0000R049

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 40/40

Accessories B65884E

Coil former


Material: PMC thermosetting plastics (UL 94 V-0), color code black,

Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	309	87	10	12	B65884E0012D001

PQ 50/40

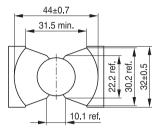
B65981B Core

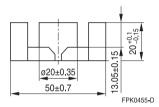
Preliminary data

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.283 \text{ mm}^{-1}$


= 93.5 mm

 $A_e = 330.0 \text{ mm}^2$

 $A_{min} = 290.0 \text{ mm}^2$ $V_{\rm p} = 30855 \, \rm mm^3$

Approx. weight 170 g/set

Dimensions in mm

Material	A _L value ¹⁾	μ_e	P_V	Ordering code
	nH		W/set	
N87	7600 +30/–20%	1710	< 3.20 (100 mT, 100 kHz, 100 °C)	B65981B0000R087
N97	7800 +30/–20%	1760	< 2.90 (100 mT, 100 kHz, 100 °C)	B65981B0000R097
N95	9400 +30/-20%	2120	, , , , , , , , , , , , , , , , , , , ,	B65981B0000R095
			< 4.50 (100 mT, 100 kHz, 120 °C)	
N92	5500 +30/–20%	1240	< 5.40 (100 mT, 100 kHz, 100 °C)	B65981B0000R095

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_I value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 50/50

Core B65981A

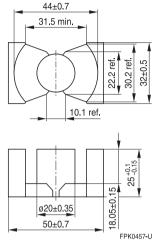
Preliminary data

■ To IEC 62317-13

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.342 \text{ mm}^{-1}$


l_o = 113.0 mm

 $A_e = 330.0 \text{ mm}^2$

 $A_{min} = 290.0 \text{ mm}^2$

 $V_{\rm e} = 37270 \, \rm mm^3$

Approx. weight 190 g/set

Dimensions in mm

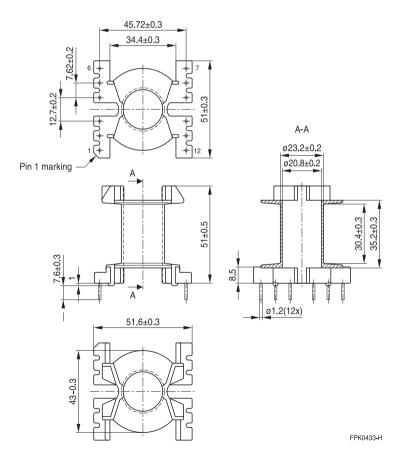
Material	A _L value ¹⁾	μ_{e}	P_V	Ordering code
	nH		W/set	
N87	6500 +30/–20%	1770	< 3.80 (100 mT, 100 kHz, 100 °C)	B65981A0000R087
N97	6700 +30/–20%	1825	< 3.50 (100 mT, 100 kHz, 100 °C)	B65981A0000R097
N95	8200 +30/-20%	2230	< 4.50 (100 mT, 100 kHz, 50 °C – 100 °C)	B65981A0000R095
			< 5.40 (100 mT, 100 kHz, 120 °C)	
N92	4700 +30/–20%	1170	< 6.50 (100 mT, 100 kHz, 100 °C)	B65981A0000R092
N51	8200 +30/-20%	2230		B65981A0000R051
			< 6.50 (100 mT, 100 kHz, 100 °C)	

¹⁾ Measurement parameter: 10 kHz, 0.25 mT, 100 turns, room temperature. A_L value is measured acc. to IEC62044-2. An appropriate wringing of cores with polished surface is used to improve reproducibility of the measurement. (It is recommended to rub the mating surfaces themselves six times in a circular or elliptic arc that matches the core profile before measuring A_L value).

PQ 50/50

Accessories B65982E

Coil former


Material: PMC thermosetting plastics (UL 94 V-0), color code black,

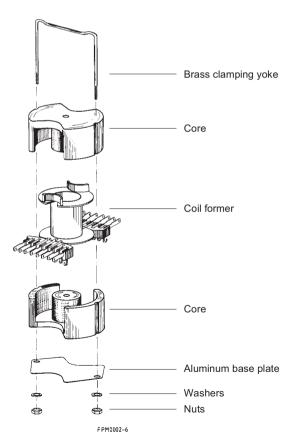
Phenolic T375 J [E59481 (M)], CHANG CHUN PLASTICS CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	340	100.5	10.2	12	B65982E0012D001

PM cores


General information

PM cores are particularly suitable for use in transformers handling high powers in the frequency range up to 300 kHz. For numerous design tasks in telecommunications and industrial electronics (e.g. power pulse transformers in radar transmitters, antenna matching networks, machine control systems, thyristor firing transformers, energy storage chokes in switch-mode power supply equipment and others), the pot core shape offers various advantages: wide flux area for high power at a minimum number of turns, thus causing only low magnetic leakage and stray capacitance, as well as good shielding owing to the closed form, precisely ground air gaps, straightforward assembly and economic mounting.

A family of large pot cores, briefly designated PM cores (for Pot core Module), is presented in the following.

Due to the weight of these pot cores, particularly in the case of the large cores 87/70 and 114/93, mounting on PC boards may not always be possible. In these cases, the coil former should be mounted with its terminals upwards.

Example of an assembly set:

PM cores

General information

1 Core losses

For each core type, the maximum dissipation loss is specified in W/set with the relevant measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{\min} .

2 Tightening torque

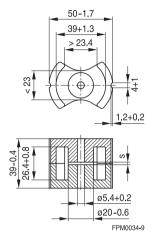
When using the mounting assembly, the torques for tightening the nuts (without printed circuit board) are as follows:

Туре	Torque
PM 50/39	0.4 Nm
PM 62/49	0.6 Nm
PM 74/59	0.8 Nm
PM 87/70	1.0 Nm
PM 114/93	1.2 Nm

PM 50/39

Core B65646

- To IEC 61247
- Particularly suitable for power transformers and energy storage chokes
- Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 0.227 \text{ mm}^{-1}$ I_a = 84 mm

 $A_e = 370 \text{ mm}^2$

 $A_{min} = 280 \text{ mm}^2$ $V_{e} = 31000 \text{ mm}^3$

Approx. weight 140 g/set

Gapped

Material	${\sf A_L}$ value ${\sf nH}$	s approx. mm	μ_{e}	Ordering code
N27	250 ±3%	2.00	45	B65646A0250A027
	630 ±3%	0.63	114	B65646A0630A027

Material	A _L value	μ_{e}	P_V	Ordering code
	nH		W/set	
N27	7400 +30/–20%	1340	< 4.2 (200 mT, 25 kHz, 100 °C)	B65646A0000R027
N87	7400 +30/–20%	1340	< 15.5 (200 mT, 100 kHz, 100 °C)	B65646A0000R087

PM 50/39

Accessories B65647

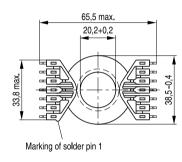
Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 $^{\circ}\text{C},$ 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 173

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Solder pins	Ordering code
1	154	96.8	21.6	14	B65647B1014T001

2.54

Ø1,6+0,15

1

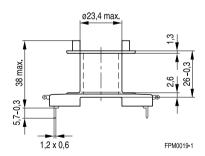
1

1

1

1

8


8

8

8

45,72

ø3.5+0.2

Hole arrangement view in mounting direction

PM 50/39

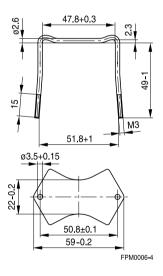
Accessories B65647

Mounting assembly

■ For chassis mounting¹⁾ or printed circuit boards

■ The set comprises a yoke and a base plate

Fixing nuts M3 and washers are supplied


Yoke

■ Material: Brass clamping yoke (∅ 3 mm) with thread

Base plate

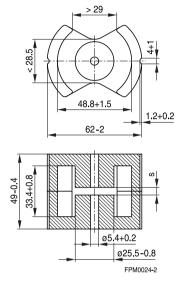
■ Material: Aluminum (0.6 mm)

	Ordering code
Complete mounting assembly including nuts and washers	B65647A2000X000

¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

PM 62/49

Core B65684


- To IEC 61247
- Particularly suitable for power transformers and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ I/A = 0.191 mm⁻¹ I_e = 109 mm A_e = 570 mm² A_{min} = 470 mm²

 $V_{e} = 62000 \text{ mm}^{3}$

Approx. weight 280 g/set

Gapped

Material	A _L value	s	μ_{e}	Ordering code
		approx.		
	nH	mm		
N27	315 ±3%	2.60	48	B65684A0315A027
	630 ±3%	1.10	95	B65684A0630A027

Material	A _L value	μ _e	P_V	Ordering code
	nH		W/set	
N27	9200 +30/–20%	1400	< 9.5 (200 mT, 25 kHz, 100 °C)	B65684A0000R027
N87	9200 +30/–20%	1400	< 5.8 (100 mT, 100 kHz, 100 °C)	B65684A0000R087

PM 62/49

Accessories B65685

Coil former

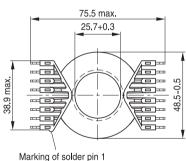
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

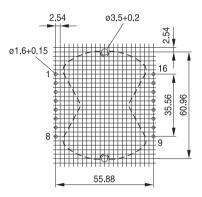
F

max. operating temperature 155 °C), color code black

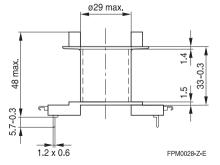
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 173

Pins squared in the start-of-winding area.


Also available without solder pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Solder pins	Ordering code
1	270	120	15.4	16	B65685B1016T001
1	270	120	15.4	_	B65685A1000T001

Hole arrangement View in mounting direction

PM 62/49

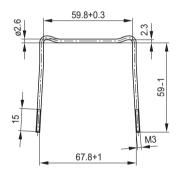
Accessories B65685

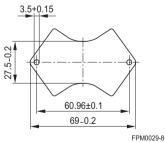
Mounting assembly

■ For chassis mounting¹⁾ or printed circuit boards

■ The set comprises a yoke and a base plate

Fixing nuts M3 and washers are supplied


Yoke


■ Material: Brass clamping yoke (Ø 2.6 mm) with thread

Base plate

■ Material: Aluminum (0.6 mm)

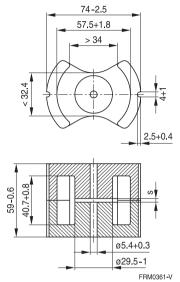
	Ordering code
Complete mounting assembly including nuts and washers	B65685A2000X000

¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

PM 74/59

Core B65686

■ To IEC 61247


- Particularly suitable for power transformers and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ I/A = 0.162 mm⁻¹ I_e = 128 mm A_e = 790 mm² A_{min} = 630 mm²

 $V_{\rm e} = 101000 \, \rm mm^3$

Approx. weight 460 g/set

Gapped

Material	A _L value	s approx. mm	μ _e	Ordering code
N27	315 ±3%	3.80	41	B65686A0315A027
	630 ±3%	1.50	81	B65686A0630A027

Material	A _L value	μ _e	P_V	Ordering code
	nH		W/set	
N27	10000 +30/–20%	1290	< 7.5 (150 mT, 25 kHz, 100 °C)	B65686A0000R027
N87	10000 +30/–20%	1290	< 9.6 (100 mT, 100 kHz, 100 °C)	B65686A0000R087

PM 74/59

Accessories B65687

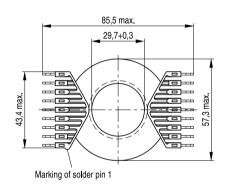
Coil former

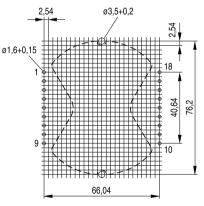
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

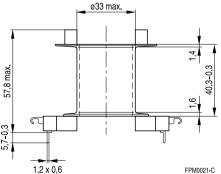
max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 173


Also available without solder pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Solder pins	Ordering code
1	442	140	10.9	18	B65687A1018T001
1	442	140	10.9	_	B65687A1000T001

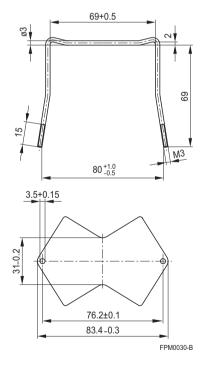
Hole arrangement view in mounting direction

PM 74/59

Accessories B65687

Mounting assembly

- For chassis mounting¹⁾ or printed circuit boards
- The set comprises a yoke and a base plate
- Fixing nuts M3 and washers are supplied


Yoke

■ Material: Brass clamping yoke (∅ 3 mm) with thread

Base plate

■ Material: Aluminum (0.6 mm)

	Ordering code
Complete mounting assembly including nuts and washers	B65687A2000X000

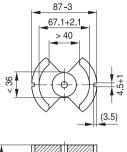
¹⁾ On a chassis the coil former must be mounted with its solder pins upward.

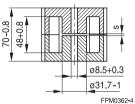
PM 87/70

Core B65713

- To IEC 61247
- For power transformers
 - >1 kW (20 kHz) and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.16 \text{ mm}^{-1}$


I_e = 146 mm

 \tilde{A}_e = 910 mm²

 $A_{min} = 700 \text{ mm}^2$ $V_{R} = 133000 \text{ mm}^3$

Approx. weight 770 g/set

Gapped

Material	A _L value	s	μ_{e}	Ordering code
		approx.		
	nH	mm		
N27	400 ± 3%	3.50	51	B65713A0400A027
	5000 ±15%	0.14	638	B65713A5000L027

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N27	12000 +30/–20%	1530	< 12.4 (150 mT, 25 kHz, 100 °C)	B65713A0000R027
N87	12000 +30/–20%	1530	< 8.0 (100 mT, 100 kHz, 100 °C)	B65713A0000R087

PM 87/70

Accessories B65714

Coil former

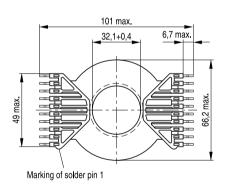
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

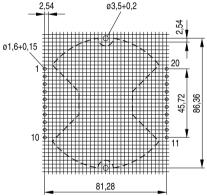
F

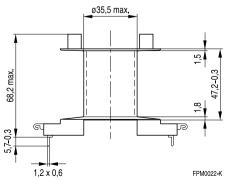
max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 173


Pins squared in the start-of-winding area.

Also available without solder pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Solder pins	Ordering code
1	657	158	8.27	20	B65714K1020T001
1	657	158	8.27	_	B65714J1000T001

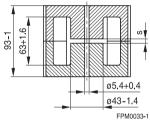
Hole arrangement view in mounting direction

PM 114/93

Core B65733

- To IEC 61247
- For power transformers
 - >1 kW (20 kHz) and energy storage chokes
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 0.116 \text{ mm}^{-1}$ I_a = 200 mm

 $A_e = 1720 \text{ mm}^2$

 $A_{min} = 1380 \text{ mm}^2$ $V_{e} = 344000 \text{ mm}^3$

Approx. weight 1940 g/set

Gapped

Material	A _L value	s approx. mm	μ _e	Ordering code
N27	630 ± 3%	3.80	58	B65733A0630A027
	6300 ±15%	0.22	583	B65733A6300L027

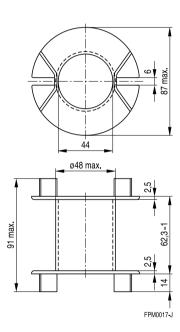
Material	A _L value	μ _e	P_V	Ordering code
	nH		W/set	
N27	16000 +30/–20%	1480	< 14.0 (100 mT, 25 kHz, 100 °C)	B65733A0000R027
N87	16000 +30/–20%	1480	< 10.0 (50 mT, 100 kHz, 100 °C)	B65733A0000R087

PM 114/93

Accessories B65734

Coil former without solder pins

Material: Polyphenylene sulphide (UL 94 V-0, insulation class to IEC 85:


F

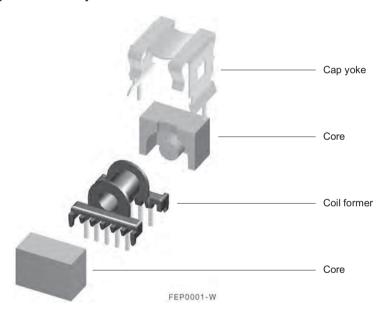
max. operating temperature 155 °C), color code black

Ryton R-4, [E233198 (M)], CHEVRON PHILLIPS CHEMICAL CO L P

Winding: see "Processing notes", page 173

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
1	1070	210	6.75	B65734B1000T001

EP, EPX, EPO cores


General information

EP, EPX and EPO cores are typically used for transformer applications. Their cubic shape provides an excellent volume ratio to total space used and permits high PCB packing densities. The compact design and the broadband materials used (N30, T38, T57, T65 and T66) ensure low magnetic leakage, low signal distortion and excellent properties for broadband small-signal transmission (xDSL).

EP cores are increasingly being used for power applications. Here we recommend the series EP 7 through EP 20 made of N87 for operation up to about 300 kHz.

Matching pinned and SMD coil formers suitable for automatic processing and shielding accessories (yoke, clamp or cap yoke) complete the product line.

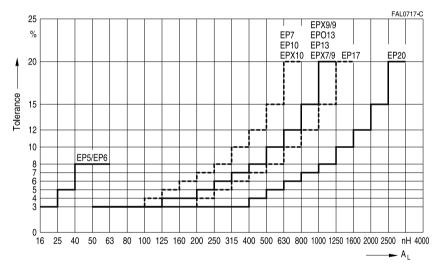
Example of an assembly set EP 13

Core losses

The maximum dissipation loss for each core type employing power materials is specified in W/set together with the measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min} .

EP, EPX, EPO cores

General information


Tolerances for EP cores

Increasing use is now being made of gapped EP cores with A_L values and ultra-low A_L tolerances, especially for broadband transformers.

The tolerances for EP cores have consequently been defined with consideration of optimized process parameters for all materials with an initial permeability μ_i in the region of 1400 to 15000 as a step function (see figure below).

The "quantized" A_L step values should preferably used. They are still available in their respective lower tolerance ranges. Thus a tolerance of $\pm 5\%$ can be determined for an EP 13 made of T38 material for an A_L value of 250 nH.

With this type of tolerance definition, EPCOS has defined standard A_L values and the associated tolerances for the first time.

B65855A Core

For small interface transformers and filter chokes

- Suitable for high precise feedthrough gapping
- Same footprint as EE5
- A_L value increases about 40% against EE5
- Winding area larger than EE5
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 3.149 \text{ mm}^{-1}$

= 9.73 mm

 $= 3.09 \text{ mm}^2$

 $A_{min} = 2.30 \text{ mm}^2$ $V_e = 30 \text{ mm}^3$

*) gapped (one-sided)

FRM0363-C-E

4.3+0.25

6.15-0.3

2.95 max.

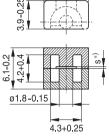
Approx. weight 0.5 g/set

Gapped

Material	A _L value	μ _e	s	Ordering code
			approx.	
	nH		mm	
T38	16 ±3%	40	0.24	B65855A0016A038
	25 ±3%	63	0.15	B65855A0025A038
	40 ±5%	100	0.10	B65855A0040J038
	63 ±8%	158	0.06	B65855A0063D038

Material	A _L value nH	μ_{e}	Ordering code
N87	430 +30/–20%	1100	B65855A0000R087
N45	550 +30/–20%	1380	B65855A0000R045
T57	560 +30/–20%	1400	B65855A0000R057
T38	2000 +40/–30%	5000	B65855A0000Y038
T66	2200 +40/–30%	5500	B65855A0000Y066

Core B65855B


For small interface transformers and filter chokes

- Suitable for high precise feedthrough gapping
- Same footprint as EE5
- Winding area larger than EE5
- Delivery mode: sets

Magnetic characteristics (per set)

 Σ I/A = 3.359 mm⁻¹ I_e = 10.28 mm A_e = 3.06 mm² A_{min} = 2.30 mm² V_e = 31 mm³

Approx. weight 0.6 g/set

6.15-0.3

2.95 max.

*) gapped (one-sided)

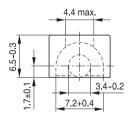
FEP0071-G-E

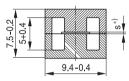
Gapped

Material	A _L value	μ_{e}	s approx. mm	Ordering code
T38	16 ±3%	43	0.24	B65855B0016A038
	25 ±3%	67	0.15	B65855B0025A038
	40 ±5%	107	0.10	B65855B0040J038
	63 ±8%	168	0.06	B65855B0063D038

Material	A _L value nH	μ_{e}	Ordering code
N87	410 +30/–20%	1100	B65855B0000R087
N45	530 +30/–20%	1400	B65855B0000R045
T57	900 +30/–20%	2400	B65855B0000R057
T66	1700 +40/–30%	4500	B65855B0000Y066
T38	1900 +40/–30%	5100	B65855B0000Y038

B65839 Core


- To IEC 61596
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 1.52 \text{ mm}^{-1}$ = 15.7 mm Åe $= 10.3 \text{ mm}^2$ $A_{min} = 8.5 \text{ mm}^2$

 $V_{\rm e}^{11111} = 162 \, \rm mm^3$

Approx. weight 1.4 g/set

*) gapped (one-sided) FEP0073-J-E

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
T38	63 ±3%	0.20	76	B65839A0063A038
	100 ±3%	0.13	121	B65839A0100A038
	160 ±5%	0.08	194	B65839A0160J038
	200 ±6%	0.06	243	B65839A0200C038
	250 ±7%	0.05	303	B65839A0250E038
T57	63 ±3%	0.20	76	B65839A0063A057
	100 ±3%	0.13	121	B65839A0100A057
	160 ±5%	0.08	194	B65839A0160J057
	200 ±6%	0.06	243	B65839A0200C057
	250 ±7%	0.05	303	B65839A0250E057
N45	63 ±3%	0.20	76	B65839A0063A045
	100 ±3%	0.13	121	B65839A0100A045
	160 ±5%	0.08	194	B65839A0160J045
	200 ±6%	0.06	243	B65839A0200C045
	250 ±7%	0.05	303	B65839A0250E045
N87	63 ±3%	0.20	76	B65839A0063A087
	100 ±3%	0.12	121	B65839A0100A087
	160 ±5%	0.07	194	B65839A0160J087
	200 ±6%	0.06	243	B65839A0200C087
	250 ±7%	0.05	303	B65839A0250E087

EP 7	
Core	B65839

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
T57	1500 +30/–20%	1820		B65839A0000R057
N45	1500 +30/–20%	1820		B65839A0000R045
N30	2000 +30/–20%	2430		B65839A0000R030
T65	3000 +30/–20%	3640		B65839A0000R065
T38	5200 +40/-30%	6310		B65839A0000Y038
T66	5800 +40/-30%	7040		B65839A0000Y066
N87	1100 +30/–20%	1330	< 0.08 (200 mT, 100 kHz, 100 °C)	B65839A0000R087

Accessories B65840

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code green

B65840B1006D001: Sumikon PM 9630® [E41429 (M)], color code black.

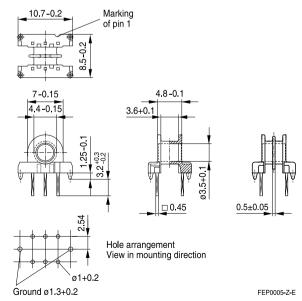
SUMITOMO BAKELITE CO LTD

B65840B1006D002: Vyncolit/X611® [E167521 (M)], VYNCOLIT NV

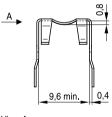
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

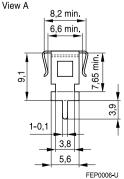
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 174


Squared pins.

Cap yoke


With ground terminal, made of stainless spring steel (tinned), 0.25 mm thick


Coil former					Ordering code
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	
1	4.7	17.7	128.7	6	B65840B1006D001
2	4.2	17.7	143.8	6	B65840B1006D002
Cap yoke		•			B65840D2000X000

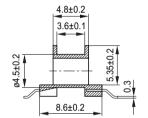
Cap yoke

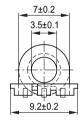
Accessories B65840

Preliminary data

SMD coil former with gullwing terminals

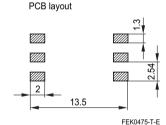
Material: GFR liquid crystal polymer (UL 94 V-0), color code black


Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD


Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s


Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	4.5	18.1	138.1	6	B65840N1106T001

Recommended

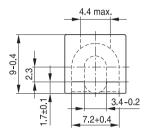
EPX 7/9

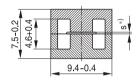
Core B65857A

- For xDSL line transformer
- Foot print of EP7
- Height of EP13
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.91 \text{ mm}^{-1}$


 $l_{p} = 15.7 \text{ mm}$


 $A_e = 17.2 \text{ mm}^2$

 $A_{min} = 13.9 \text{ mm}^2$

 $V_e = 270 \text{ mm}^3$

Approx. weight 2.8 g/set

*) gapped (one-sided)

FEP0074-K-E

Gapped

Material	A _L value	s approx.	μ_{e}	Ordering code
	nH	mm		
T38	63 ±3%	0.35	46	B65857A0063A038
	100 ±3%	0.22	73	B65857A0100A038
	160 ±4%	0.14	116	B65857A0160B038
	200 ±4%	0.11	145	B65857A0200B038
	250 ±5%	0.09	182	B65857A0250J038
	315 ±6%	0.06	229	B65857A0315C038
	400 ±7%	0.05	291	B65857A0400E038
T57	63 ±3%	0.35	46	B65857A0063A057
	100 ±3%	0.22	73	B65857A0100A057
	160 ±4%	0.14	116	B65857A0160B057
	200 ±4%	0.11	145	B65857A0200B057
	250 ±5%	0.09	182	B65857A0250J057
	315 ±6%	0.06	229	B65857A0315C057
	400 ±7%	0.05	291	B65857A0400E057
T66	63 ±3%	0.35	46	B65857A0063A066
	100 ±3%	0.22	73	B65857A0100A066
	160 ±4%	0.14	116	B65857A0160B066
	200 ±4%	0.11	145	B65857A0200B066
	250 ±5%	0.09	182	B65857A0250J066
	315 ±6%	0.06	229	B65857A0315C066
	400 ±7%	0.05	291	B65857A0400E066

EPX 7/9	
Core	B65857A

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
N45	63 ±3%	0.35	46	B65857A0063A045
	100 ±3%	0.22	73	B65857A0100A045
	160 ±4%	0.14	116	B65857A0160B045
	200 ±4%	0.11	145	B65857A0200B045
	250 ±5%	0.09	182	B65857A0250J045
	315 ±6%	0.06	229	B65857A0315C045
	400 ±7%	0.05	291	B65857A0400E045

Material	A _L value nH	μ_{e}	Ordering code
N45	2500 +30/–20%	1820	B65857A0000R045
T57	2600 +30/–20%	1890	B65857A0000R057
T38	9000 +40/–30%	6540	B65857A0000Y038
T66	10500 +40/–30%	7630	B65857A0000Y066

EPX 7/9

Accessories B65858

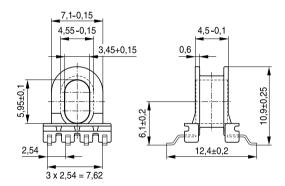
SMD coil former with gullwing terminals

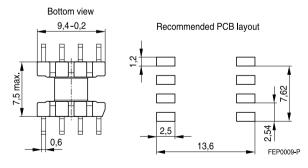
Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Zenite 7130® [E344082 (M)], TICONA


Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s


Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see "Processing notes", page 179

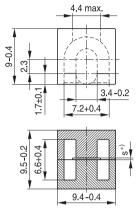
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	4.1	22.9	191.8	8	B65858A1008T001

EPX 9/9

Core B65857C

- For xDSL line transformers
- Height of EP13
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)


 $\Sigma I/A = 1.09 \text{ mm}^{-1}$

l_e = 19.0 mm

 $\tilde{A}_{e} = 17.5 \text{ mm}^2$

 $A_{min} = 13.9 \text{ mm}^2$ $V_e = 333 \text{ mm}^3$

Approx. weight 3 g/set

*) gapped (one-sided)

FEP0075-L-E

Gapped

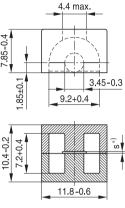
Material	A _L value	s approx. mm	μ_{e}	Ordering code
T38	63 ±3%	0.35	54	B65857C0063A038
	100 ±3%	0.22	86	B65857C0100A038
	160 ±4%	0.14	138	B65857C0160B038
	200 ±4%	0.11	173	B65857C0200B038
	250 ±5%	0.09	216	B65857C0250J038
	315 ±6%	0.07	272	B65857C0315C038
	400 ±7%	0.05	346	B65857C0400E038
T57	63 ±3%	0.34	54	B65857C0063A057
	100 ±3%	0.22	86	B65857C0100A057
	160 ±4%	0.13	138	B65857C0160B057
	200 ±4%	0.11	173	B65857C0200B057
	250 ±5%	0.08	216	B65857C0250J057
	315 ±6%	0.07	272	B65857C0315C057
	400 ±7%	0.05	346	B65857C0400E057
T66	63 ±3%	0.35	54	B65857C0063A066
	100 ±3%	0.22	86	B65857C0100A066
	160 ±4%	0.14	138	B65857C0160B066
	200 ±4%	0.11	173	B65857C0200B066
	250 ±5%	0.09	216	B65857C0250J066
	315 ±6%	0.07	272	B65857C0315C066
	400 ±7%	0.05	346	B65857C0400E066

EPX 9/9	
Core	B65857C

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
N45	63 ±3%	0.34	54	B65857C0063A045
	100 ±3%	0.21	86	B65857C0100A045
	160 ±4%	0.13	138	B65857C0160B045
	200 ±4%	0.10	173	B65857C0200B045
	250 ±5%	0.08	216	B65857C0250J045
	315 ±6%	0.06	272	B65857C0315C045
	400 ±7%	0.05	346	B65857C0400E045

Material	A _L value nH	μ_{e}	Ordering code
N45	2400 +30/–20%	2070	B65857C0000R045
T57	2400 +30/–20%	2070	B65857C0000R057
T38	8000 +40/–30%	6910	B65857C0000Y038
T66	8100 +40/–30%	7000	B65857C0000Y066


Core B65841

- To IEC 61596
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

$$\begin{split} \Sigma I/A &= 1.7 \text{ mm}^{-1} \\ I_e &= 19.2 \text{ mm} \\ A_e &= 11.3 \text{ mm}^2 \\ A_{min} &= 8.5 \text{ mm}^2 \\ V_e &= 217 \text{ mm}^3 \end{split}$$

Approx. weight 2.8 g/set

*) gapped (one-sided) FEP0076-Y-E

Gapped

Material	A _L value	S	μ_{e}	Ordering code
		approx.		
	nH	mm		
T38	63 ±3%	0.22	85	B65841A0063A038
	100 ±3%	0.14	135	B65841A0100A038
	160 ±5%	0.09	216	B65841A0160J038
	200 ±6%	0.07	270	B65841A0200C038
	250 ±7%	0.05	338	B65841A0250E038
T57	63 ±3%	0.22	85	B65841A0063A057
	100 ±3%	0.14	135	B65841A0100A057
	160 ±5%	0.09	216	B65841A0160J057
	200 ±6%	0.07	270	B65841A0200C057
	250 ±7%	0.05	338	B65841A0250E057
N45	63 ±3%	0.22	85	B65841A0063A045
	100 ±3%	0.14	135	B65841A0100A045
	160 ±5%	0.08	216	B65841A0160J045
	200 ±6%	0.07	270	B65841A0200C045
	250 ±7%	0.05	338	B65841A0250E045
N87	63 ±3%	0.22	85	B65841A0063A087
	100 ±3%	0.13	135	B65841A0100A087
	160 ±5%	0.08	216	B65841A0160J087
	200 ±6%	0.06	270	B65841A0200C087
	250 ±7%	0.05	338	B65841A0250E087

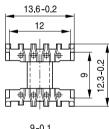
EP 10	
Core	B65841

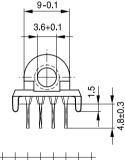
Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N45	1600 +30/–20%	2160		B65841A0000R045
T57	1600 +30/–20%	2160		B65841A0000R057
N30	2000 +30/–20%	2700		B65841A0000R030
T65	2900 +30/–20%	3920		B65841A0000R065
T38	4800 +40/-30%	6490		B65841A0000Y038
T66	6000 +40/–30%	8100		B65841A0000Y066
N87	1100 +30/–20%	1480	< 0.1 (200 mT, 100 kHz, 100 °C)	B65841A0000R087

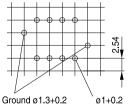
Accessories B65842

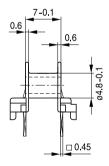
Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

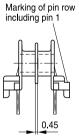

H ≙ max. operating temperature 180 °C), color code black


Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 68-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 174

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	12.1	21.5	61.3	8	B65842W1008D001
2	11.6	21.5	63.7	8	B65842W1008D002



Hole arrangement View in mounting direction

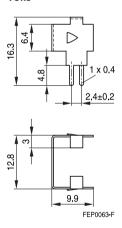
FEP0011-S-E

Accessories B65842

Mounting assembly

The set comprises a yoke and a clamp

Yoke


Made of nickel silver (0.4 mm) with ground terminal (tinned)

Clamp

Spring clamp, made of nickel silver (0.3 mm), tinned

	Ordering code
Complete mounting assembly	B65842S2000X000

Yoke

Clamp

EPX 10

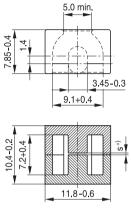
Core B65859

■ For xDSL line transformers

- Outer dimensions of EP10
- Optimized design for low distortion
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 1.37 \text{ mm}^{-1}$


 $I_e = 21.7 \text{ mm}$

 \tilde{A}_{e} = 15.9 mm²

 $A_{min} = 13.2 \text{ mm}^2$

 $V_{\rm e} = 345 \, {\rm mm}^3$

Approx. weight 2.8 g/set

*) gapped (one-sided)

FEP0077-X-E

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
T38	63 ±3%	0.31	68	B65859A0063A038
	100 ±3%	0.20	109	B65859A0100A038
	160 ±5%	0.12	174	B65859A0160J038
	200 ±6%	0.10	217	B65859A0200C038
	250 ±7%	0.08	271	B65859A0250E038
T57	63 ±3%	0.31	68	B65859A0063A057
	100 ±3%	0.20	109	B65859A0100A057
	160 ±5%	0.12	174	B65859A0160J057
	200 ±6%	0.10	217	B65859A0200C057
	250 ±7%	0.08	271	B65859A0250E057

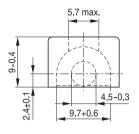
Material	A _L value	μ_{e}	Ordering code
	nH		
T57	2000 +30/–20%	2170	B65859A0000R057
T38	6100 +40/–30%	6630	B65859A0000Y038

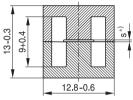
Core B65843A

- To IEC 61596
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 1.24 \text{ mm}^{-1}$


 $I_e = 24.2 \text{ mm}$


 $A_e = 19.5 \text{ mm}^2$

 $A_{min} = 14.9 \text{ mm}^2$ $V_e = 472 \text{ mm}^3$

v_e - 472 IIIIII

Approx. weight 4.5 g/set

*) gapped (one-sided)

FEP0078-C-E

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
T38	63 ±3%	0.39	62	B65843A0063A038
	100 ±3%	0.24	99	B65843A0100A038
	160 ±4%	0.15	158	B65843A0160B038
	200 ±4%	0.12	198	B65843A0200B038
	250 ±5%	0.10	247	B65843A0250J038
	315 ±6%	0.08	311	B65843A0315C038
	400 ±7%	0.06	395	B65843A0400E038
T57	63 ±3%	0.38	62	B65843A0063A057
	100 ±3%	0.24	99	B65843A0100A057
	160 ±4%	0.15	158	B65843A0160B057
	200 ±4%	0.12	198	B65843A0200B057
	250 ±5%	0.09	247	B65843A0250J057
	315 ±6%	0.07	311	B65843A0315C057
	400 ±7%	0.06	395	B65843A0400E057
T66	63 ±3%	0.39	62	B65843A0063A066
	100 ±3%	0.24	99	B65843A0100A066
	160 ±4%	0.15	158	B65843A0160B066
	200 ±4%	0.12	198	B65843A0200B066
	250 ±5%	0.10	247	B65843A0250J066
	315 ±6%	0.08	311	B65843A0315C066
	400 ±7%	0.06	395	B65843A0400E066

Core B65843A

Gapped

Material	A _L value	s approx.	μ _e	Ordering code
	nH	mm		
N45	63 ±3%	0.38	62	B65843A0063A045
	100 ±3%	0.24	99	B65843A0100A045
	160 ±4%	0.15	158	B65843A0160B045
	200 ±4%	0.12	198	B65843A0200B045
	250 ±5%	0.09	247	B65843A0250J045
	315 ±6%	0.07	311	B65843A0315C045
	400 ±7%	0.05	395	B65843A0400E045
N87	63 ±3%	0.37	62	B65843A0063A087
	100 ±3%	0.23	99	B65843A0100A087
	160 ±4%	0.14	158	B65843A0160B087
	200 ±4%	0.11	198	B65843A0200B087
	250 ±5%	0.09	247	B65843A0250J087
	315 ±6%	0.07	311	B65843A0315C087
	400 ±7%	0.05	395	B65843A0400E087

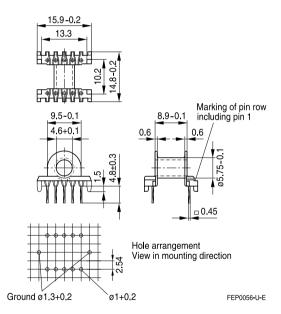
Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
N45	2400 +30/–20%	2370		B65843A0000R045
T57	2500 +30/–20%	2470		B65843A0000R057
N30	2800 +30/–20%	2765		B65843A0000R030
T65	4000 +30/–20%	3950		B65843A0000R065
T38	7000 +40/–30%	6910		B65843A0000Y038
T66	8500 +40/-30%	8400		B65843A0000Y066
N87	1600 +30/–20%	1580	< 0.18 (200 mT, 100 kHz, 100 °C)	B65843A0000R087

Accessories B65844

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code black


Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 174

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	14.3	23.8	57.1	10	B65844W1010D001

Accessories B65844

Coil former with closed center flange for high-voltage applications

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 174

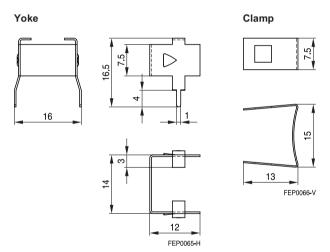
Squared pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
2	13.9	23.8	58.9	10	B65844X1010D002

Accessories B65844

Mounting assembly

The set comprises a yoke and a clamp


Yoke

Made of cold rolled steel (0.4 mm) with ground terminal (tinned)

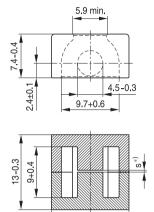
Clamp

Spring clamp, made of bronze (0.4 mm)

	Ordering code
Complete mounting assembly	B65844B2000X000

EPO 13

Core B65843P


■ Recommended for xDSL applications with transformer height constraints

- Low-profile version of EP13 (1.6 mm lower than EP13)
- Distortion performance close to EP13
- Fully compatible with EP13 coils
- Delivery mode: sets

Magnetic characteristics (per set)

 $\begin{array}{lll} \Sigma I / A &= 1.34 \ mm^{-1} \\ I_e &= 25.8 \ mm \\ A_e &= 19.3 \ mm^2 \\ A_{min} &= 14.9 \ mm^2 \\ V_e &= 498 \ mm^3 \end{array}$

Approx. weight 3 g/set

12.8-0.6

*) gapped (one-sided)

FEP0079-V-E

Gapped

Material	A _L value nH	s approx. mm	μ_{e}	Ordering code
T38	63 ±3%	0.38	67	B65843P0063A038
	100 ±3%	0.24	106	B65843P0100A038
	160 ±4%	0.15	170	B65843P0160B038
	200 ±4%	0.12	213	B65843P0200B038
	250 ±5%	0.09	266	B65843P0250J038
	315 ±6%	0.07	335	B65843P0315C038
	400 ±7%	0.06	426	B65843P0400E038
T57	63 ±3%	0.38	67	B65843P0063A057
	100 ±3%	0.24	106	B65843P0100A057
	160 ±4%	0.15	170	B65843P0160B057
	200 ±4%	0.11	213	B65843P0200B057
	250 ±5%	0.09	266	B65843P0250J057
	315 ±6%	0.07	335	B65843P0315C057
	400 ±7%	0.07	426	B65843P0400E057

Material	A _L value nH	μ_{e}	Ordering code
T57	2400 +30/–20%	2550	B65843P0000R057
T38	6600 +40/–30%	7020	B65843P0000Y038

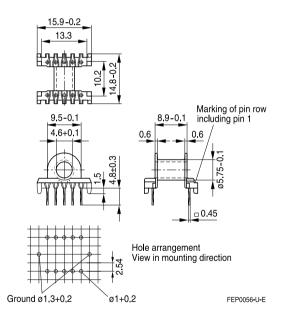
EPO 13

Accessories B65844

Coil former, squared pins

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code black


Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 174

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	14.3	23.8	57.1	10	B65844W1010D001

EPO 13

Accessories B65844

Coil former with closed center flange for high-voltage applications

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

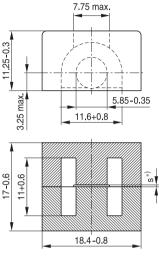
Winding: see "Processing notes", page 174

Squared pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
2	13.9	23.8	58.9	10	B65844X1010D002

Core B65845

- To IEC 61596
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 0.84 \text{ mm}^{-1}$ $I_e = 28.5 \text{ mm}$ $A_o = 33.9 \text{ mm}^2$

 $A_{min} = 25.5 \text{ mm}^2$

 $V_{e} = 966 \text{ mm}^{3}$

Approx. weight 12 g/set

*) gapped (one-sided)

FEP0080-B-E

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N30	4300 +30/–20%	2870		B65845J0000R030
T65	6200 +30/–20%	4150		B65845J0000R065
T38	10800 +40/–30%	7220		B65845J0000Y038
T66	13000 +40/–30%	8700		B65845J0000Y066
N87	2400 +30/-20%	1600	< 0.4 (200 mT, 100 kHz, 100 °C)	B65845J0000R087

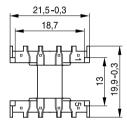
Accessories B65846

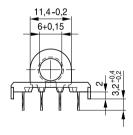
Coil former

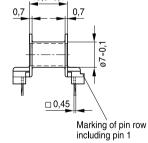
Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

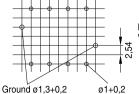
H ≙ max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 174


Squared pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	20.3	28.7	48.6	8	B65846W1008D001

Hole arrangement View in mounting direction

FEP0028-C

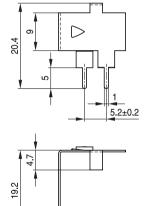
Accessories B65846

Mounting assembly

The set comprises a yoke and a clamp

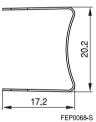
Yoke

Made of cold rolled steel (0.4 mm) with ground terminal (tinned)


Clamp

Spring clamp, made of bronze (0.4 mm)

	Ordering code
Complete mounting assembly	B65846S2000X000



16

FEP0067-A

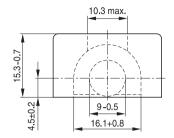
Clamp

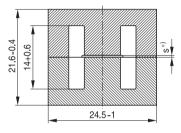
Core B65847

- To IEC 61596
- For transformers featuring high inductance and low overall height
- For power applications
- Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 0.51 \text{ mm}^{-1}$


 $I_e = 40 \text{ mm}$


 $A_e = 78 \text{ mm}^2$

 $A_{min} = 60 \text{ mm}^2$

 $V_e^{11111} = 3120 \text{ mm}^3$

Approx. weight 27.5 g/set

*) gapped (one-sided)

FEP0081-N-E

Gapped

Material	A _L value	s approx.	μ_{e}	Ordering code
	nH	mm		
N87	200 ±3%	0.47	82	B65847A0200A087

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	
N30	6700 +30/–20%	2730		B65847A0000R030
T65	10200 +30/–20%	4160		B65847A0000R065
T38	18700 +40/–30%	7630		B65847A0000Y038
N87	4000 +30/–20%	1630	< 1.2 (200 mT, 100 kHz, 100 °C)	B65847A0000R087

Accessories B65848

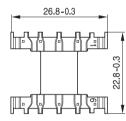
Coil former

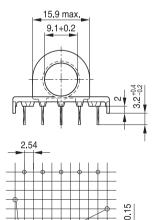
Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

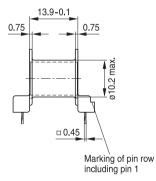
F

max. operating temperature 155 °C), color code green

Vyncolit/X611® [E167521 (M)], VYNCOLIT NV


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 174

Squared pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	35.4	40.6	39.5	10	B65848D1010D001

FEP0083-W-E

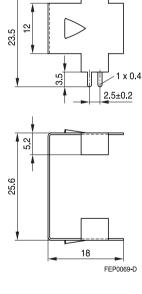
Ground 1.3+0.2

Accessories B65848

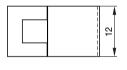
Mounting assembly

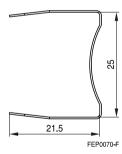
The set comprises a yoke and a clamp

Yoke


Made of nickel bronze (0.4 mm) with ground terminal (tinned)

Clamp


Spring clamp, made of stainless spring steel (0.4 mm)


	Ordering code
Complete mounting assembly	B65848A2000X000

Yoke

Clamp

P cores (pot cores)

General information

1 General information

P cores (**P**ot cores) are available in a wide range of sizes; 7 types in our product line comply with IEC 60133. We offer a choice of different SIFERRIT materials, which permits the cores to be used for a large variety of applications to over 100 MHz. Since the wound coil is completely enclosed by the ferrite core, P cores feature low magnetic leakage. They can be easily and precisely adjusted to the most manifold inductor requirements.

We naturally also supply the appropriate accessories for each core version. Most of the cores are available with threaded sleeves and screws for precision inductance adjustment. Adjustment curves are given for this purpose. These relate to the particular recommended combination of screw core/core material A_I value and must be understood as typical values.

2 Applications

The cores are suitable for:

- High-quality resonant circuit inductors (filters) with high inductance stability (materials K1, M33, N48).
- Low-distortion broadband small-signal transformers in materials T38 and N30 with high A_I value
- Power applications. Here, pot cores without center hole made of material N87 are used as standard. As a result of their larger effective magnetic cross-sectional area, these types are characterized by a higher A_L value, better flux density distribution and, consequently, a reduced power loss.

3 Marking

The material and the A_L value are always stamped on P cores with a diameter > 5.8 mm, the material and "o. L." (= without air gap) are stamped on ungapped cores. Only one core half of the two comprising a set carries the marking. With cores having an unsymmetrical air gap (the total air gap is ground into one half) the ground half carries the marking, with cores including a glued-in threaded sleeve the half without sleeve is marked.

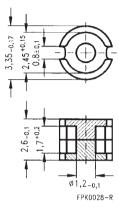
4 Power loss

For each core type with power materials the maximum power loss is specified in W/set. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{\min} .

P 3.3 × 2.6

Core B65491

■ To IEC 62323


■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 3.72 \text{ mm}^{-1}$ $I_e = 5.10 \text{ mm}$ $A_e = 1.37 \text{ mm}^2$

 $V_{\rm e} = 7 \, \text{mm}^3$

Approx. weight 0.06 g/set

Ungapped

Material	A _L value	μ _e	Ordering code
	nH		-C without center hole
K1	25 +40/–30%	75	B65491C0000Y001
N30	500 +40/-30%	1480	B65491C0000Y030

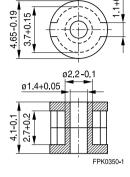
Winding data

Usable winding cross section A _N without coil former	Average length of turn A _N	A _R value
mm ²	mm	μΩ
0.65	5.8	310

P 4.6 × 4.1

B65495 Core

Miniature pot cores


- The unit can be fixed to the terminal carrier by glue
- Space requirements of the inductor 5 × 5.1 mm (without terminals)
- Delivery mode: sets

 $\Sigma I/A = 2.7 \text{ mm}^{-1}$ = 7.6 mm

 $= 2.8 \text{ mm}^2$

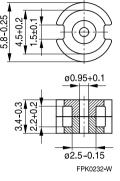
 $= 21.3 \text{ mm}^3$

Approx. weight 0.17 g/set

Material	A _L value nH	μ _e	Ordering code -B with center hole
M33	200 +40/–30%	430	B65495B0000Y033
N30	800 +40/–30%	1730	B65495B0000Y030

P 5.8 × 3.3

Core B65501

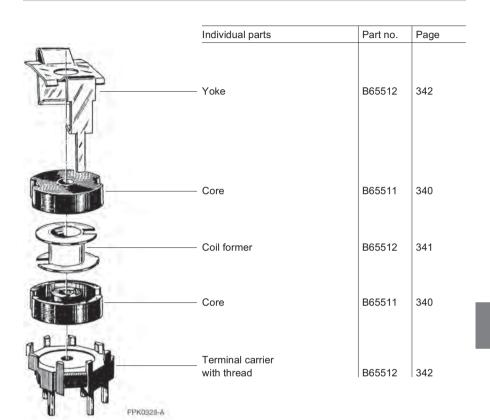

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 1.68 \text{ mm}^{-1}$ $I_e = 7.9 \text{ mm}$ $A_e = 4.7 \text{ mm}^2$

 $V_{\rm e} = 37 \, \text{mm}^3$

Approx. weight 0.2 g/set


Ungapped 1)

Material	A _L value nH	μ_{e}	Ordering code -D with center hole
M33	350 +30/–20%	470	B65501D0000R033
N48	800 +40/–30%	1070	B65501D0000Y048

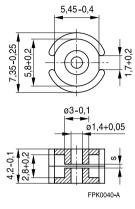
¹⁾ Gapped pot cores on request

Core and accessories

Example of an assembly set for printed circuit boards

Core B65511

■ Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 1.43 \text{ mm}^{-1}$ I₂ = 10 mm

 $\tilde{A}_e = 7 \text{ mm}^2$

 $V_{e}^{3} = 70 \text{ mm}^{3}$

Approx. weight 0.5 g/set

Gapped

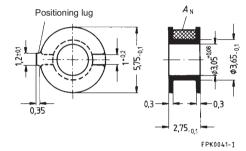
Material	A _L value	s approx.	μ_{e}	Ordering code
	nH	mm		-A with center hole
K1	25 ±3%	0.23	28	B65511A0025A001
M33	63 ±3%	0.13	72	B65511A0063A033
N48	100 ±3%	0.10	114	B65511A0100A048

Material	A _L value nH	μ_{e}	Ordering code -A with center hole
N48	1000 +40/–30%	1140	B65511A0000Y048
N30	2000 +40/–30%	2270	B65511A0000Y030

Accessories B65512

Coil former with positioning lug

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Winding: see "Processing notes", page 175

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
1	2.2	14.6	240	B65512C0000T001

Please read *Important notes* on page 2 and *Cautions and warnings* on page 609.

B65512 **Accessories**

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a yoke
- For snap-in connection

Terminal carrier

■ With thread for the adjusting screw

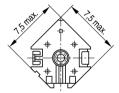
Material: GFR polyphenylene sulphide (UL 94 V-0, insulation class to IEC 60085:

F

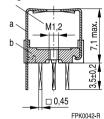
max. operating temperature 155 °C), color code black

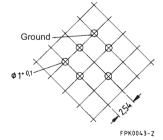
Ryton R-4, [E54700 (M)], CHEVRON PHILLIPS CHEMICAL CO L P

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke


Spring yoke, made of tinned nickel silver (0.2 mm), with ground terminal


Complete mounting assembly (5 solder terminals)

Ordering code: B65512C2001X000

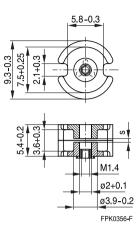
Thread for adjusting screw

b) Terminal carrier with 5 solder terminals

Core and accessories

	Individual parts	Part no.	Page
	Yoke	B65518	347
	Core	B65517	344
	Coil former	B65522	345
	Insulating washer		
	Core	B65517	344
	Terminal carrier with thread	B65518	347
FPK0019-S Example of an assembly set for printed circuit boards			
Also available:	SMD coil former	B65524	346

Core B65517


■ To IEC 60133■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	1.25	1.13	mm ⁻¹
l _e	12.5	13.4	mm
l _e A _e	10	11.9	mm ²
A _{min}	_	9.3	mm ²
V _e	125	159	mm ³

Approx. weight (per set)

m	0.8	1.0	a
	0.0	1.0	9

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code 1) -D with center hole -T with threaded sleeve
K1	25 ±3%	0.45	25	B65517+0025A001
	40 ±3%	0.26	40	B65517+0040A001
M33	63 ±3%	0.20	63	B65517D0063A033
N48	100 ±3%	0.10	100	B65517+0100A048
	160 ±3%	0.06	159	B65517+0160A048
	200 ±3%	0.04	200	B65517D0200A048
	250 ±5%	0.03	249	B65517D0250J048

Material	A_L value nH	μ _e	Ordering code -D with center hole -W without center hole
N48	1300 +30/–20%	1290	B65517D0000R048
N30	2500 +30/–20%	2490	B65517D0000R030
T38	5500 +40/–30%	4930	B65517W0000Y038

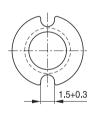
¹⁾ Replace the + by the code letter "D" or "T" for the required version.

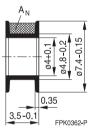
Accessories B65522

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature 155 °C), color code black


Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Winding: see "Processing notes", page 175

Coil former	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	3.6	19.2	183	B65522B0000T001

Coil former

Accessories B65524

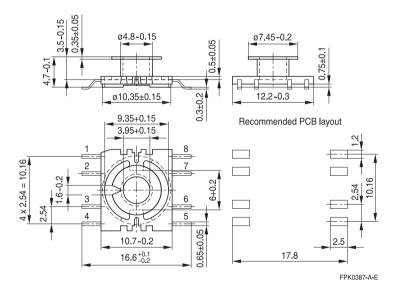
SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD


Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see "Processing notes", page 175

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	3.4	19.2	194	4	B65524C1004T001
	3.4	19.2	194	8	B65524C1008T001

In the 4-terminal version terminals 2, 3, 6 and 7 are omitted.

Accessories B65518

Mounting assembly for printed circuit boards

The set comprises a terminal carrier and a voke

■ For snap-in connection

Terminal carrier

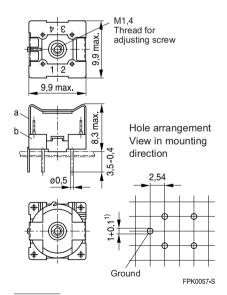
■ With thread for the adjusting screw (to be combined with core version "D") GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: Material:

F

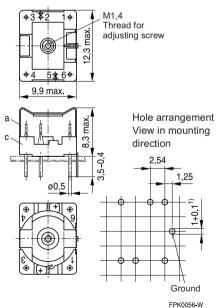
max. operating temperature 155 °C), color code black

Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke


Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

Complete mounting assembly	Complete mounting assembly
(4 solder terminals)	(6 solder terminals)
Ordering code: B65518D2001X000	Ordering code: B65518D2002X000

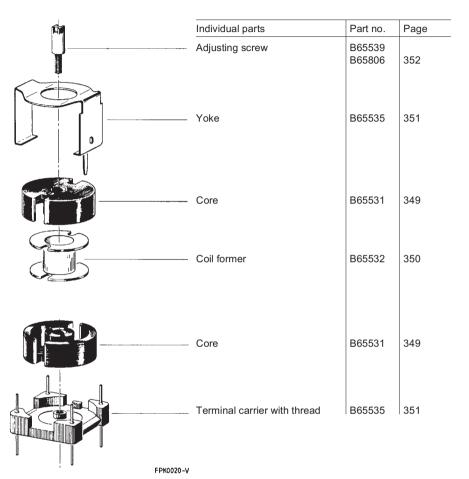
4 solder terminals

6 solder terminals

1) 1.3 hole also permissible

a) Yoke

b) Terminal carrier with 4 solder terminals


c) Terminal carrier with 6 solder terminals

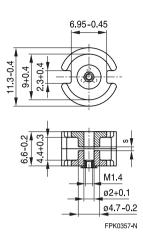
Please read Important notes on page 2 and Cautions and warnings on page 609.

04/13

Core and accessories

Example of an assembly set for printed circuit boards

Core B65531


■ To IEC 60133■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	1.0	0.92	mm ⁻¹
l _e	15.9	16.3	mm
I _e A _e	15.9	17.7	mm ²
A _{min}	_	14.1	mm ²
V _e	253	289	mm ³

Approx. weight (per set)

m	1.7	1.8	g

Gapped

Material	A _L value	s approx.	μ_{e}	Ordering code 1) -D with center hole
	nH	mm		-T with threaded sleeve
K1	25 ±3%	1.00	20	B65531D0025A001
	40 ±3%	0.41	32	B65531D0040A001
M33	40 ±3%	0.64	32	B65531D0040A033
	63 ±3%	0.38	50	B65531D0063A033
N48	100 ±3%	0.20	80	B65531D0100A048
	160 ±3%	0.10	127	B65531+0160A048
	250 ±3%	0.06	199	B65531+0250A048
	400 ±5%	0.03	318	B65531D0400J048

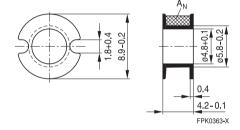
Material	A _L value	μ _e	P _V	Ordering code -D with center hole
	nH		W/set	-W without center hole
M33	780 +30/–20%	620		B65531D0000R033
N48	1800 +30/–20%	1430		B65531D0000R048
N30	3500 +30/–20%	2560		B65531W0000R030
T38	7000 +40/–30%	5130		B65531W0000Y038
N87	2000 +30/–20%	1470	< 0.12 (200 mT, 100 kHz, 100 °C)	B65531W0000R087

¹⁾ Replace the + by the code letter "D" or "T" for the required version.

Accessories B65532

Coil former

Standard: to IEC 60133


Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Winding: see "Processing notes", page 175

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
1	4.2	22	180	B65532B0000T001

Accessories B65535

Mounting assembly for printed circuit boards

- The set comprises a terminal carrier and a voke
- For snap-in connection

Terminal carrier

■ With thread for the adjusting screw (to be combined with core version "D")

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

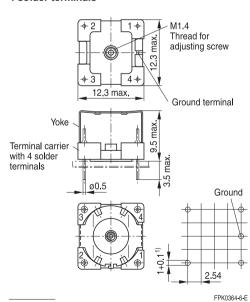
F

max. operating temperature + 155 °C), color code black

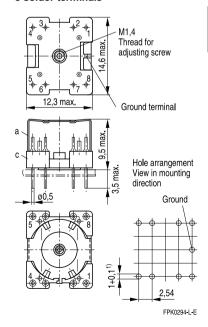
4 solder terminals: Rynite FR 530° [E41938 (M)], E I DUPONT DE NEMOURS & CO

8 solder terminals: Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke


Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

Complete mounting assembly	Complete mounting assembly
(4 solder terminals)	(8 solder terminals)
Ordering code: B65535B0002X000	Ordering code: B65535B0003X000

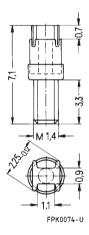
4 solder terminals

8 solder terminals

04/13

^{1) 1.3} hole also permissible

c) Terminal carrier with 8 solder terminals


Accessories B65539, B65806

Adjusting screw

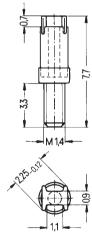
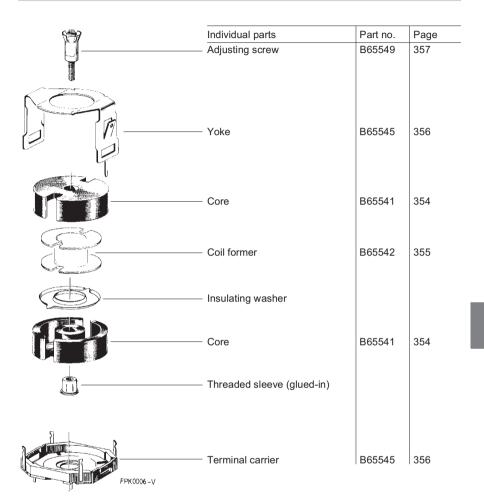

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core			Ordering code
	Ø x length (mm)	Material	Color code	
а	1.81 × 2.0	K1	yellow	B65539C1003X001
а	1.81 × 2.7	K1	gray	B65539C1002X001
а	1.81 × 2.7	N22	red	B65539C1002X022
b	1.81 × 3.4	N22	green	B65806C3001X022


b

FRM0031-Q

Core and accessories

Example of an assembly set for printed circuit boards

B65541 Core

■ To IEC 60133 ■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.8	0.73	mm ⁻¹
l _e	20	21	mm
l _e Α _e	25	28.7	mm ²
A _{min}	20	23.6	mm ²
V_e	500	603	mm ³

FPK0085-A

9,2-0,5

Approx. weight (per set)

|--|

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -D with center hole -T with threaded sleeve
M33	100 ±3%	0.30	64	B65541+0100A033
N48	160 ±3%	0.16	102	B65541+0160A048
	250 ±3%	0.10	159	B65541+0250A048
	315 ±3%	0.08	201	B65541+0315A048
	400 ±3%	0.05	255	B65541+0400A048

Material	A _L value	μ _e	P _V	Ordering code -D with center hole
	nH		W/set	-W without center hole
K1	140 +30/–20%	89		B65541D0000R001
M33	970 +30/–20%	618		B65541D0000R033
N48	2100 +30/–20%	1340		B65541D0000R048
N30	4600 +30/-20%	2680		B65541W0000R030
T38	9800 +40/-30%	5710		B65541W0000Y038
N87	2800 +30/–20%	1630	< 0.26 (200 mT, 100 kHz, 100 °C)	B65541W0000R087

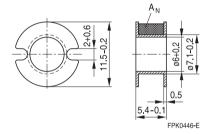
¹⁾ Replace the + by the code letter "D" or "T" for the required version.

Accessories B65542

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature + 155 °C), color code black

Crastin SK 645 FR [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Winding: see "Processing notes", page 175

Coil former	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	8.4	28	115	B65542B0000T001

Coil former

Accessories B65545

Mounting assembly for printed circuit boards

■ The set comprises a terminal carrier and a yoke

■ For snap-in connection

Terminal carrier

GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085: Material:

F

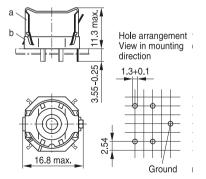
max. operating temperature 155 °C), color code gray

Pocan B4235® [E245249 (M)]. LANXESS AG

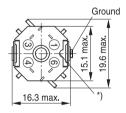
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

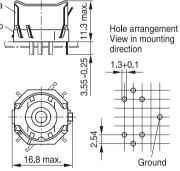
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke


Spring yoke, made of tinned nickel silver (0.25 mm), with ground terminal

(4 solder terminals) (6 solder terminals)


Ordering code: B65545B0009X000 Ordering code: B65545B0010X000


4 solder terminals

Ground 16.3 max.

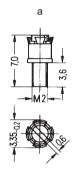
6 solder terminals

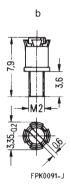
FPK0447-M-E

^{*)} This recess must be on the side of the grounding pin to ensure that the yoke locks in position.

b) Terminal carrier with 4 solder terminals

c) Terminal carrier with 6 solder terminals

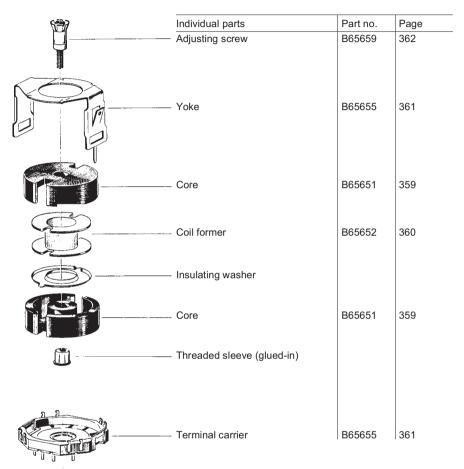



Accessories B65549

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core			Ordering code
	$\emptyset \times \text{length (mm)} \mid \text{Material} \qquad \mid \text{Color code}$			
а	2.6 × 2.0	N22	white	B65549E0003X023
b	2.76 × 2.9	N22	black	B65549E0004X023



P 18 × 11

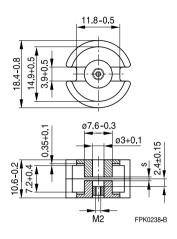
Core and accessories

FPK0021-4

Example of an assembly set for printed circuit boards

P 18 × 11

B65651 Core


■ To IEC 60133 ■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.6	0.57	mm ⁻¹
l _e	25.9	26.6	mm
l _e Α _e Δ	43	46.7	mm ²
A _{min}	_	33.9	mm ²
V _e	1114	1242	mm ³

Approx. weight (per set)

m	6.0	6.6	g

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code 1) -D with center hole -T with threaded sleeve
K1	40 ±3%	1.60	19	B65651+0040A001
M33	100 ±3%	0.60	48	B65651+0100A033
N48	160 ±3%	0.32	77	B65651+0160A048
	250 ±3%	0.20	120	B65651+0250A048
	315 ±3%	0.15	151	B65651+0315A048
	400 ±3%	0.10	192	B65651+0400A048
	500 ±3%	0.07	240	B65651+0500A048
	630 ±5%	0.05	302	B65651D0630J048

Material	A _L value	μ _e	P _V	Ordering code -D with center hole
	nH		W/set	-W without center hole
N48	2800 +30/–20%	1340		B65651D0000R048
N30	5900 +30/–20%	2680		B65651W0000R030
T38	12600 +40/–30%	5710		B65651W0000Y038
N87	3600 +30/–20%	1630	< 0.46 (200 mT, 100 kHz, 100 °C)	B65651W0000R087

¹⁾ Replace the + by the code letter "D" or "T" for the required version.

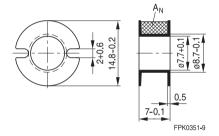
P 18 × 11

Accessories B65652

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Winding: see "Processing notes", page 175

Coil former				Bestellnummer
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	16	35.6	87	B65652B0000T001

Coil former

P 18 × 11

Accessories B65655

Mounting assembly for printed circuit boards

■ The set comprises a terminal carrier and a yoke

■ For snap-in connection

Terminal carrier

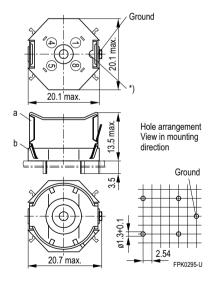
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

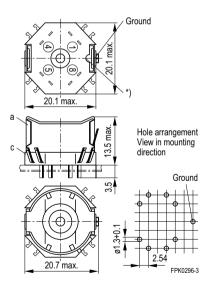
max. operating temperature 155 °C), color code gray

Pocan B4235® [E245249 (M)]. LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke


Spring yoke, made of tinned nickel silver (0.3 mm), with ground terminal

Complete mounting assembly	Complete mounting assembly
(4 solder terminals)	(8 solder terminals)
Ordering code: B65655B0009X000	Ordering code: B65655B0010X000

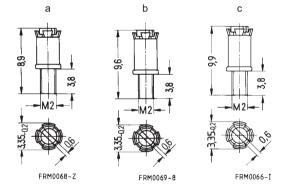
4 solder terminals

8 solder terminals

^{*)} This recess must be on the side of the grounding pin to ensure that the yoke locks in position.

b) Terminal carrier with 4 solder terminals

c) Terminal carrier with 8 solder terminals


P 18 × 11

Accessories B65659

Adjusting screw

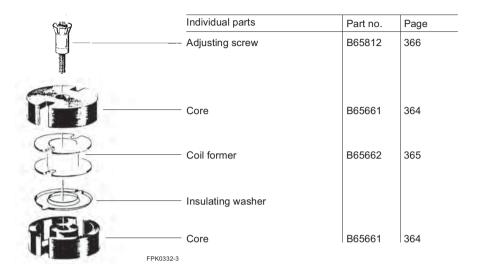
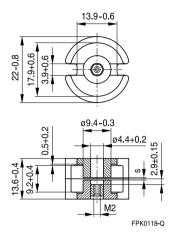

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Figure	Tube core			Ordering code
	Ø x length (mm)	Material	Color code	
а	2.62 × 3.6	K1	green	B65659F0001X001
а	2.62 × 3.6	N22	red	B65659F0001X023
b	2.75 × 4.4	N22	black	B65659F0003X023
С	2.82 × 4.4	N22	yellow	B65659F0004X023

Core and accessories

Example of an assembly set for printed circuit boards

B65661 Core


■ To IEC 60133 ■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.5	0.46	mm ⁻¹
l _e	31.6	33.2	mm
l _e A _e	63	72.6	mm ²
A_{min}	_	58.1	mm ²
V _e	1990	2410	mm ³

Approx. weight (per set)

m	13	1/1	a
111	13	14	9

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -D with center hole -N with threaded sleeve
N48	160 ± 3%	0.50	64	B65661+0160A048
	250 ± 3%	0.26	100	B65661+0250A048
	315 ± 3%	0.22	126	B65661+0315A048
	630 ± 3%	0.10	251	B65661+0630A048
	1250 ±10%	0.05	499	B65661D1250K048

Ungapped

Material	A _L value	μ_{e}	P _V	Ordering code -D with center hole
	nH		W/set	-W without center hole
K1	220 +30/–20%	88		B65661D0000R001
N48	3800 +30/–20%	1520		B65661D0000R048
N30	8300 +30/–20%	3020		B65661W0000R030
T38	16000 +40/–30%	5820		B65661W0000Y038
N87	4400 +30/–20%	1600	< 1.1 (200 mT, 100 kHz, 100 °C)	B65661W0000R087

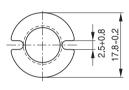
¹⁾ Replace the + by the code letter "D" or "N" for the required version.

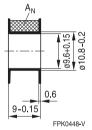
Accessories B65662

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

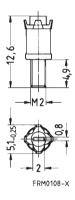

F ≙ max. operating temperature 155 °C), color code black


Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Winding: see "Processing notes", page 175

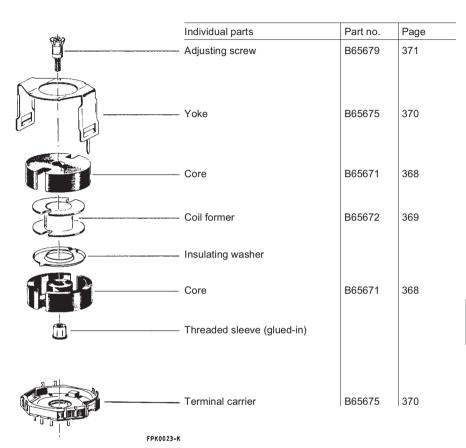
Coil former				Ordering code
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	23.4	44	67	B65662B0000T001

Coil former



Accessories B65812

Adjusting screw

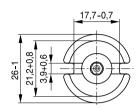

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

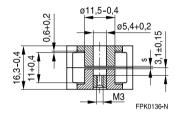
Tube core			Ordering code
$\emptyset \times \text{length (mm)}$	Material	Color code	
3.85 × 5.0	N22	gray	B65812B3003X022

Core and accessories

Example of an assembly set for printed circuit boards

B65671 Core


■ To IEC 60133 ■ Delivery mode: sets


Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.4	0.37	mm ⁻¹
l _e	37.2	40	mm
A _e	93	108	mm ²
A _{min}	76.5	87	mm ²
V _e	3460	4320	mm ³

Approx. weight (per set)

m	21	23	g

Gapped

Material	A _L value	s approx. mm	μ_{e}	Ordering code ¹⁾ -D with center hole -T with threaded sleeve
K1	100 ±3%	0.90	32	B65671+0100A001
M33	100 ±3% 160 ±3%	1.52 0.78	32 51	B65671+0100A033 B65671+0160A033
N48	160 ±3% 250 ±3% 315 ±3% 400 ±3% 630 ±3% 800 ±3% 1000 ±5%	0.80 0.40 0.34 0.24 0.15 0.11	51 80 100 127 201 255 318	B65671+0160A048 B65671+0250A048 B65671+0315A048 B65671+0400A048 B65671+0630A048 B65671+0800A048 B65671D1000J048

Ungapped

Material	A _L value	μ _e	P _V	Ordering code
	nH		W/set	-D with center hole -W without center hole
N48	4900 +30/–20%	1560		B65671D0000R048
N30	9700 +30/–20%	2860		B65671W0000R030
T38	22000 +40/–30%	6480		B65671W0000Y038
N87	5500 +30/–20%	1620	< 1.9 (200 mT, 100 kHz, 100 °C)	B65671W0000R087

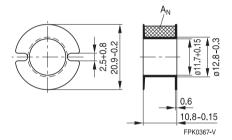
¹⁾ Replace the + by the code letter "D" or "T" for the required version.

Accessories B65672

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Winding: see "Processing notes", page 175

Coil former	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	32.0	52	55	B65672B0000T001

Coil former

Accessories B65675

Mounting assembly for printed circuit boards

■ The set comprises a terminal carrier and a yoke

■ For snap-in connection

Terminal carrier

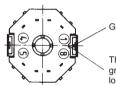
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code gray

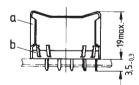
Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

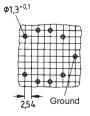

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.4 mm), with ground terminal


Complete mounting assembly (8 solder terminals)

Ordering code: B65675B0005X000



Grounding pin

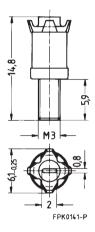
This recess must be on the side of the grounding pin to ensure that the yoke locks into position.

Hole arrangement View in mounting direction

FPK0140-G

a) Yoke

b) Terminal carrier with 8 solder terminals

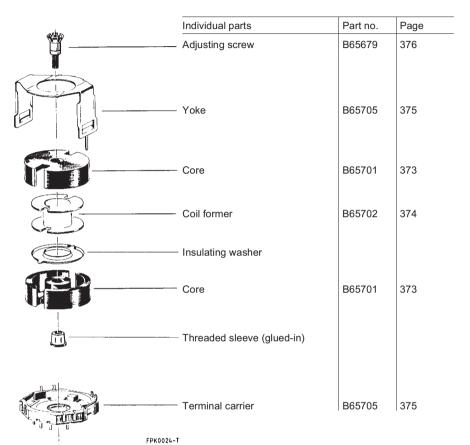


Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Tube core			Ordering code
$\emptyset \times \text{length (mm)}$	Material	Color code	
4.55 × 6.3	N22	red	B65679E0003X022
4.98 × 6.3	N22	black	B65679E0002X022



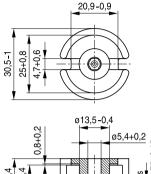
Note:

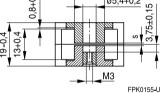
Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

Core and accessories

Example of an assembly set for printed circuit boards

Core B65701


■ To IEC 60133■ Delivery mode: sets


Magnetic characteristics (per set)

	with	without center hole	
	center note	center noie	
Σ I/A	0.33	0.32	mm ⁻¹
l _e	45	46	mm
l _e Α _e Δ	136	145	mm ²
A _{min}	_	117	mm ²
V _e	6120	6670	mm ³

Approx. weight (per set)

m	36	38	g

Gapped

Material	A _L value	s	μ_{e}	Ordering code 1)
		approx.		-D with center hole
	nH	mm		-T with threaded sleeve
N48	250 ± 3%	0.72	66	B65701+0250A048
	400 ± 3%	0.40	105	B65701+0400A048
	630 ± 3%	0.22	166	B65701+0630A048
	1000 ± 3%	0.12	263	B65701+1000A048
	2000 ±10%	0.05	527	B65701D2000K048

Ungapped

Material	A _L value	μ _e	P _V	Ordering code
				-D with center hole
	nH		W/set	-W without center hole
N48	6200 +30/–20%	1630		B65701D0000R048
N30	11500 +30/–20%	2900		B65701W0000R030
T38	28000 +40/–30%	7070		B65701W0000Y038
N87	6400 +30/–20%	1620	< 2.5 (200 mT, 100 kHz, 100 °C)	B65701W0000R087

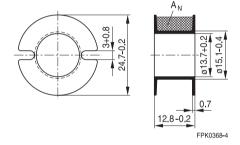
¹⁾ Replace the + by the code letter "D" or "T" for the required version.

Accessories B65702

Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Winding: see "Processing notes", page 175

Coil former	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	48	60	46	B65702B0000T001

Coil former

Accessories B65705

Mounting assembly for printed circuit boards

■ The set comprises a terminal carrier and a yoke

■ For snap-in connection

Terminal carrier

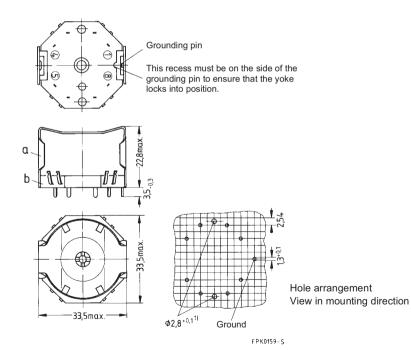
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 85:

F

max. operating temperature 155 °C), color code gray

Pocan B4235® [E245249 (M)]. LANXESS AG

Solderability: to IEC 68-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 68-2-20, test Tb, method 1B: 350 °C, 3.5 s

Yoke

Spring yoke, made of tinned nickel silver (0.5 mm), with ground terminal

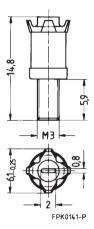
Complete mounting assembly (8 solder terminals)

Ordering code: B65705B0003X000

1) The 2.8 mm hole is only necessary for additional fixing with M 2.5 screw.

a) Yoke

b) Terminal carrier with 8 solder terminals

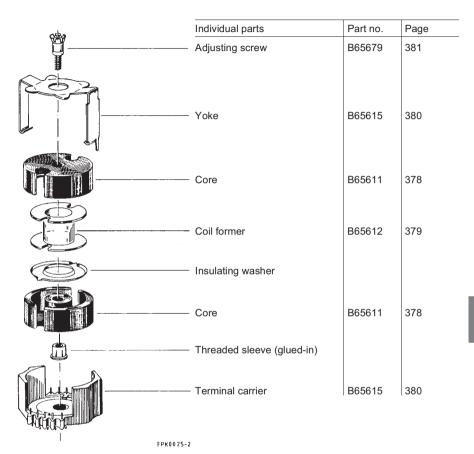


Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Tube core			Ordering code
$\emptyset \times \text{length (mm)}$	Material	Color code	
4.55 × 6.3	N22	red	B65679E0003X022
4.98 × 6.3	N22	black	B65679E0002X022



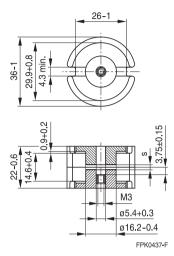
Note:

Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

Core and accessories

Example of an assembly set for printed circuit boards

Core B65611


■ Delivery mode: sets

Magnetic characteristics (per set)

	with center hole	without center hole	
ΣΙ/Α	0.26	0.25	mm ⁻¹
l _e	52	53.5	mm
l _e A _e A:	202	213	mm ²
A_{min}	_	173	mm ²
V _e	10500	11400	mm ³

Approx. weight (per set)

m	57	59.5	g

Gapped

value	s approx. mm	μ _e	Ordering code 1) -D with center hole -T with threaded sleeve
60 ±3%	1.20	51	B65611+0250A048
0 ±3%	0.35	129	B65611+0400A048 B65611+0630A048 B65611+1000A048
	0 ±3% 0 ±3%	approx. mm 0 ±3% 1.20 0 ±3% 0.62 0 ±3% 0.35	approx. mm

Ungapped

Material	A _L value	μ _e	Ordering code -D with center hole -W without center hole
N48	7600 +30/–20%	1560	B65611D0000R048
N30	15200 +30/–20%	3040	B65611W0000R030

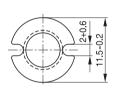
¹⁾ Replace the + by the code letter "D" or "T" for the required version.

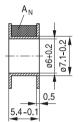
Accessories B65612

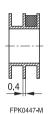
Coil former

Standard: to IEC 60133

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:


F ≙ max. operating temperature 155 °C), color code black


Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS


Winding: see "Processing notes", page 175

Coil former				Ordering code
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	
1	63	73	39	B65612B0000T001

Coil former

Accessories B65615

Mounting assembly for printed circuit boards

■ The set comprises a terminal carrier and a yoke

■ For snap-in connection

Terminal carrier

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

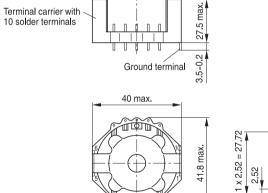
F

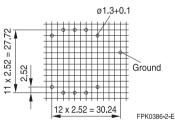
max. operating temperature 155 °C), color code black

Pocan B4235® [E245249 (M)]. LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

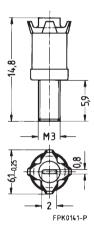

Yoke


Spring yoke, made of nickel silver (0.6 mm), with ground terminal

Complete mounting assembly (10 solder terminals)

Ordering code: B65615B0001X000

Yoke

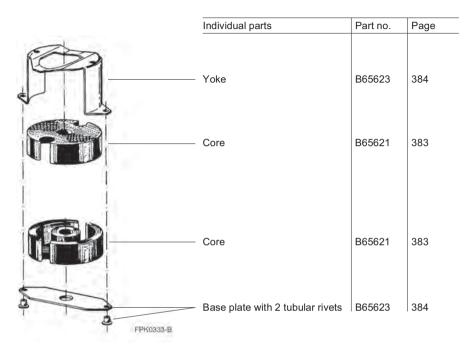


Accessories B65679

Adjusting screw

■ Tube core with thread and core brake made of GFR polyterephthalate Pocan B3235® [E245249 (M)], LANXESS AG

Tube core		Ordering code	
$\emptyset \times \text{length (mm)}$	Material	Color code	
4.55 × 6.3	N22	red	B65679E0003X022
4.98 × 6.3	N22	black	B65679E0002X022


Note:

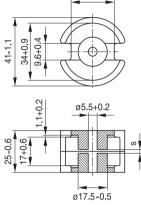
Due to the limited distance between adjusting screw and internal borehole, the entire assembly must be accurately centered.

P 41 × 25

Core and accessories

Example of an assembly set

P 41 × 25


Core B65621

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ I/A = 0.264 mm⁻¹ I_e = 60.4 mm A_e = 229 mm² A_{min} = 201 mm² V_e = 13832 mm³

Approx. weight 82 g/set

26-1.5

FPK0438-N

Gapped

Material	A _L value	s approx.	μ_{e}	Ordering code
	nH	mm		-J with center hole
N48	250 ± 3%	1.35	51	B65621J0250A048
	630 ± 3%	0.43	129	B65621J0630A048
	3150 ±10%	0.05	643	B65621J3150K048

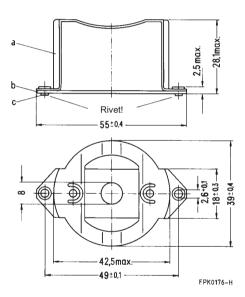
Ungapped

Material	A _L value nH	μ_{e}	Ordering code -J with center hole
N48	8400 +30/–20%	1720	B65621J0000R048

P 41 × 25

Accessories B65623

Mounting assembly for chassis mounting


- The set comprises a yoke and a metal base plate
- Fixing by screws or rivets

Yoke

Spring yoke, made of nickel silver (0.5 mm)

Complete mounting assembly (with tubular rivets)

Ordering code: B65623A0001X000

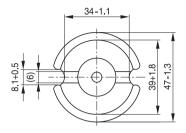
a) Yoke

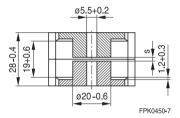
b) Base plate

c) Tubular rivets

P 47 × 28

Core B65631


■ Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 0.22 \text{ mm}^{-1}$ $I_e = 69.1 \text{ mm}$ $A_e = 310 \text{ mm}^2$

 $A_{min} = 263 \text{ mm}^2$ $V_e = 21428 \text{ mm}^3$

Approx. weight 125 g/set

Gapped

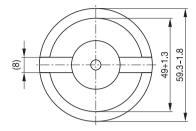
Material	A _L value	s approx.	μ_{e}	Ordering code
	nH	mm		-J with center hole
N48	100 ±3%	3.9	18	B65631J0100A048
	250 ±3%	1.5	44	B65631J0250A048

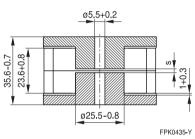
Ungapped

Material	A _L value nH	μ_{e}	Ordering code -J with center hole
N48	9500 +30/–20%	1690	B65631J0000R048

P 59 × 36

Core B65691


■ Delivery mode: sets


Magnetic characteristics (per set)

 $\Sigma I/A = 0.181 \text{ mm}^{-1}$ $I_e = 88 \text{ mm}$ $A_e = 485 \text{ mm}^2$

 $A_{min} = 445 \text{ mm}^2$ $V_e = 42680 \text{ mm}^3$

Approx. weight 270 g/set

Gapped

Material	A _L value	s approx. mm	μ _e	Ordering code -K with center hole
N48	100 ± 3% 1000 ± 3%	6 0.57	14 144	B65691K0100A048 B65691K1000A048
	6500 ±10%	0.06	940	B65691K6500K048

Ungapped

Material	A _L value nH	μ_{e}	Ordering code -K with center hole
N48	12500 +30/–20%	1800	B65691K0000R048

P core halves for proximity switches (PS cores)

General information

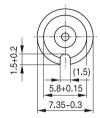
Inductive proximity switches can be used as noncontacting motion detectors and output indicators. Possible applications:

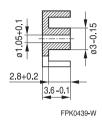
- Detection of the final position on conveyor belts
- Counters at rotating parts
- Contactless detection of pointer position of pointer-type measuring and control instruments

The advantages of proximity switches are bounceless switching, no mechanical wear, insensitivity to contamination and detection of metallic parts only.

We supply P core halves/PS cores with diameters ranging from 7.35 to 150 mm for inductive proximity switches. Their dimensions are matched to standardized switches. Maximum operating distances can thus be achieved for the individual P core sizes. The SIFERRIT material N22 is particularly suitable for the frequency range from 0.1 to 0.8 MHz. The material M33 is additionally available for higher frequencies (core types with 5.6 to 14.0 mm diameter).

Thermoplastic coil formers can be supplied for most of the core types. This material permits an operating temperature range of -60 to +120 °C. Consequently, temperatures of up to +120 °C are also permissible during encapsulation.


PS 7.35 × 3.6


Core and accessories

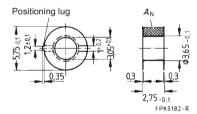
B65933, B65512

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 80 to 800 kHz
- Material M33 for higher frequencies up to about 1.6 MHz

Material	Approx. weight	Ordering code
N22	0.3	B65933A0000X022
M33	0.3	B65933A0000X033

Coil former with positioning lug

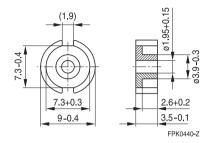

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
2.2	14.6	240	B65512C0000T001


PS 9 × 3.5

Core and accessories

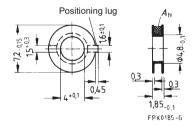
B65935, B65936

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 80 to 800 kHz
- Material M33 for higher frequencies up to about 1.6 MHz

Material	Approx. weight	Ordering code
N22	0.6	B65935E0000X022
M33	0.6	B65935E0000X033

Coil former with positioning lug

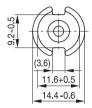

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

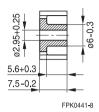
F

max. operating temperature 155 °C), color code black

Pocan B4235® [E245249 (M)], LANXESS AG

A _N	I _N	A _R value	Ordering code
mm ²	mm	μΩ	
1.5	18.6	470	B65936A0000T001


P core half 14 × 7.5

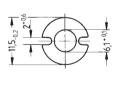

Core and accessories

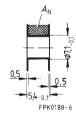
B65937, B65542

Core

- For inductive proximity switches
- Material N22 for the frequency range from about 70 to 700 kHz

Material	Approx. weight	Ordering code
	g	
N22	2.5	B65937A0000X022

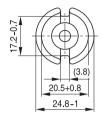

Coil former

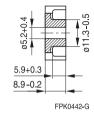

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Crastin SK 645 FR® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
8.4	28	115	B65542B0000T001


PS 25 × 8.9


Core and accessories

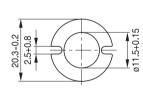
B65939, B65940

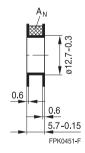
Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 60 to 600 kHz

Material	Approx. weight	Ordering code
N22	9	B65939A0000X022

Coil former

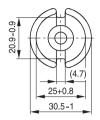

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

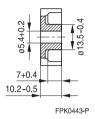

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
16.7	51	105	B65940B0000T001

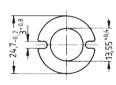

PS 30.5 × 10.2


Core and accessories

B65941, B65942

Core

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 50 to 500 kHz

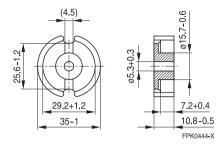

Material	Approx. weight	Ordering code
N22	18	B65941A0000X022

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

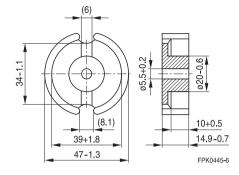
A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
24.4	62	87	B65942B0000T001



PS 35 × 10.8

Core B65947

- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 40 to 400 kHz

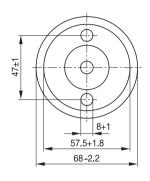

Material	Approx. weight	Ordering code
	g	
N22	28	B65947A0000X022

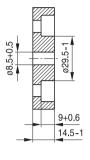
PS 47 × 14.9

Core B65943

- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 30 to 300 kHz

Material	Approx. weight	Ordering code
N22	62	B65943A0000X022


PS 68 × 14.5


Core and accessories

B65928, B65946

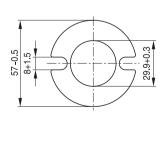
Core

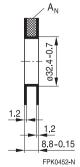
- To IEC 62323
- Recommended for new designs
- For inductive proximity switches
- Material N22 for the frequency range from about 20 to 200 kHz

FPK0385-T

Material	Approx. weight	Ordering code
N22	130	B65928A0000X022

Coil former

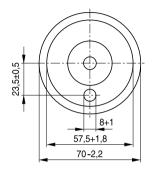

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

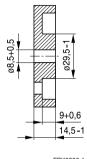

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
77	140	62	B65946B0000T001


P core half 70 × 14.5


Core and accessories

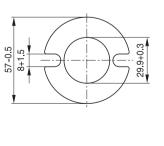
B65945, B65946

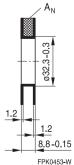
Core

- For inductive proximity switches
- Material N22 for the frequency range from about 20 to 200 kHz

FPK0336-1

Material	Approx. weight	Ordering code
N22	160	B65945A0000X022

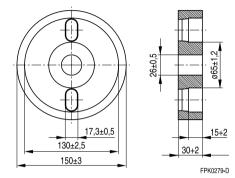

Coil former


Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

A _N mm ²	I _N mm	A_R value $\mu\Omega$	Ordering code
77	140	62	B65946B0000T001



P core half 150 × 30

Core B65949

Large-volume pot core

- Unground core for inductive proximity switches with wide operating distances
- Application examples:
 - Rotary transformers for non-contact power and information transmission
 - Inductive power transmission (non-contact charging of electric cars)
- Options:
 - a) Ground version for transformers up to 30 kW
 - b) Core height up to 45 mm for transformers up to 100 kW

Magnetic characteristics for option a)

(per set) $\Sigma I/A = 0.044 \text{ mm}^{-1}$

l_o = 160 mm

 $A_{2} = 3580 \text{ mm}^{2}$

 $A_{min} = 2800 \text{ mm}^2$

 $V_e = 566000 \text{ mm}^3$

Material	Approx. weight	Ordering code
N27	1700	B65949A0000X027

General information

1 Core shapes and materials

The preferred materials for manufacture of E cores are the SIFERRIT materials N27, N87, T46 and N30. N27 is recommended for power applications in the frequency range up to about 100 kHz and N87 for the frequency range up to 500 kHz; EFD cores made of N49 are particularly suitable for frequencies f >500 kHz. These materials feature a high saturation flux density and low power loss.

Material N30 is particularly suitable for broadband small-signal applications and also for interference suppression chokes.

The E core spectrum contained in this data book comprises five basic core shapes, which can be used not only for transformers but also for chokes with a power capacity of up to 10 kW.

a) Types with round center leg

We offer the following types:

- FR cores
- EQ cores
- ETD cores to IEC 61185 (Economic Transformer Design)

E cores with round center leg offer the advantage of easy winding, particularly when thick winding wires are used, compact mounting dimensions and wide openings on each side. ETD cores have the additional benefit of an almost constant cross section along the magnetic path. A wide variety of optimized accessories is available. ER cores in sizes 9.5 and 11/5 are particularly suitable for designing transformers with low overall height and high inductance. They come in material T38 for broadband applications plus in N87 and N49 for power transformers for frequencies up to and over 500 kHz.

- b) Types with rectangular center leg
- E cores
- EFD cores (Economic Flat Transformer Design): EV cores

The conventional E cores with rectangular center leg are available in a wide variety of sizes.

EFD cores have an optimized cross section and enable the design of very flat and compacts transformers, even for high-frequency applications.

c) ELP cores (E Low Profile)

ELP cores enable the design of very flat transformers and feature excellent thermal performance due to the large core surface. ELP cores are now specified in IEC 62317-9.

General information

2 Ordering, marking, delivery

E cores are supplied as single units (except ER 9.5, ER 11 and ER 14.5/6: in sets), with each packing unit (PU) exclusively containing cores with or without shortened center leg (air gap dimension "g").

Gapped EFD cores are supplied with toleranced A_L value as specified in the data sheets. All other E cores are available with toleranced A_L value on request.

There are two possibilites of air gap distribution, either symmetrical (each core of a set has the same air gap size) or unsymmetrical (a gapped core is combined with an ungapped core).

E and U cores are marked using the same system. Hence, the following description applies to both core shapes.

- E 5, E 6.3, E 8.8, EFD 10 and I cores are not marked.
- E cores are marked by an ink-jet printer on the outside of the legs (figure 1).

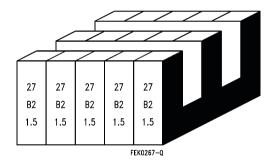


Fig. 1 Marking by ink-jet printer

Gapped cores:

with toleranced air gap: material, date code and size of air gap,

e.g.: 27 B2 1.5

with toleranced AL value:

 $\underline{\text{symmetrical version}}$: material, date code, A_L value and code for A_L value

tolerance, e.g.: 27 B230A

unsymmetrical version: material, date code and size of air gap,

e.g.: 27 B2 1.5

Ungapped cores are marked with material and date code, e.g.: 27 B2.

General information

Depending on their height and width, there is not enough space on all cores for complete marking, meaning that simplification is necessary. So only the material and the date code will be stated. This ensures that there is space for at least one complete marking (two characters per line) on the core. To avoid confusion of names like N27 and N72, the beginning of the material designation coincides with the position of the letter in the date code.

Example:

∀ 727272

2B2B2B

means N27 (not N72)

Remark: in some exception cases parts are stamped with rolls on the back (gapped EFD 15 for example).

Date code:

Date coding is based on a two-week period (see tables, counting by calendar weeks CW).

In the following year lines 1 and 2 will we swapped (material and date code). The position of letters and digits will not be swapped. Counting started in 1996.

Coding of two-week production periods

CW	Code	CW	Code	CW	Code
1 and 2	А	19 and 20	J	37 and 38	S
3 and 4	В	21 and 22	K	39 and 40	Т
5 and 6	С	23 and 24	L	41 and 42	U
7 and 8	D	25 and 26	M	43 and 44	V
9 and 10	E	27 and 28	N	45 and 46	W
11 and 12	F	29 and 30	0	47 and 48	Х
13 and 14	G	31 and 32	Р	49 and 50	Υ
15 and 16	Н	33 and 34	Q	51 and 52	Z
17 and 18	1	35 and 36	R	53	AA

Coding of week day

	Day	Code		Day	Code
CW _n	Monday	1	CW _{n+1}	Monday	6
	Tuesday	2		Tuesday	7
	Wednesday	3		Wednesday	8
	Thursday	4		Thursday	9
	Friday	5		Friday	0
	Saturday	5		Saturday	0
	Sunday	+		Sunday	_

The black ink is insoluble in water, but it will dissolve in fluids based on ketones. It will also dissolve if left for a long time in an ultrasonic bath. Different colored markings are not feasible.

General information

3 Cores with toleranced air gap

The following tolerances for dimension "g" apply to all E cores:

Dimension g	Tolerance
mm	mm
g < 0.10 mm	±0.01
0.10 mm ≤ g < 0.5	±0.02
$g \ge 0.5$	±0.05

As is the case with ungapped cores, a certain degree of roughness cannot be avoided on the ground surfaces of the outer legs.

4 Cores with toleranced A₁ value

The tolerance of the A_L value depends on the magnitude of the A_L value and the core shape. Tolerance figures are therefore given only on a core-type-specific basis.

5 Calculation formulae

Calculation formulae a) and b) apply to the A_I value under the following measuring conditions:

Measuring flux density $\hat{B} \le 0.25$ mT, measuring frequency f = 10 kHz, measuring temperature T = 25 ± 3 °C, measuring coil: N = 100 turns, fully wound

a) Air gap and AL value

The typical A_L value tabulated in the individual data sheets refers to a core set comprising a gapped core with dimension "g" and an ungapped core with "g" approx. 0.

By inserting the core-specific constants K1 and K2, a nominal A_L value can be calculated for the materials N27 and N87 within the relevant quoted air-gap validity range:

$$s = \left(\frac{A_L}{K1}\right)^{\frac{1}{K2}} \qquad s = [mm]$$
$$A_L = [nH]$$

Production variations with regard to μ_i and grinding quality should be taken into account additionally.

b) DC magnetic bias Inc

By using the core-shape-related factors K3 and K4, nominal values can be determined for the DC magnetic biasing characteristic of E, ETD and EFD cores made of N27 and N87 and ELP cores made of N87 at temperature 25 °C and 100 °C.

The direct current I_{DC} at which the A_L value drops by 10% compared to the A_L value without magnetic biasing (I_{DC} = 0 A) is determined for a coil with 100 turns.

Calculation of I_{DC} at T = 25 °C:

The factors K3 and K4 for T = 25 $^{\circ}$ C and the A_L value without magnetic biasing are inserted into the equation for the calculation.

General information

Calculation of I_{DC} at T = 100 °C:

The factors K3 and K4 for T = 100 $^{\circ}$ C are inserted into the equation for the calculation. The value for T = 25 $^{\circ}$ C without magnetic biasing should be used here as the A_I value.

$$I_{DC} = \left(\frac{0.9 \cdot A_L}{K3}\right)^{\frac{1}{K4}} \qquad \qquad I_{DC} = [A] \\ A_L = [nH] \qquad \text{(without magnetic biasing)}$$

6 Magnetic characteristics

The set characteristics ΣVA , I_e , A_e , A_{min} and V_e required for the calculation of field strength, flux density and hysteresis losses have been determined to IEC 60205 (A_{min} = minimum cross section relative to the nominal dimensions).

7 Core losses

The maximum power loss for each core type is specified in W/set together with the measurement parameters. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{\min} .

8 Accessories

The coil formers for all ETD, EFD and ER cores and most of the E cores are designed so that they can be wound fully automatically.

With the ETD cores and most E cores, each core half and its mounting assembly can be fitted to the coil former from the same side, thus permitting simple fully automatic assembly.

If coil formers are used for cores with a rectangular cross section (E cores), the indication of the winding height represents only a theoretical value. The use of thicker wires or litz wires results in a gradual rounding of the winding from layer to layer. In such cases the planned winding design should be verified by means of a winding test.

SMD coil formers are available as accessory.

E 5

Core B66303

- To IEC 61246
- For small impedance-matching transformers in telecom applications
- For miniature transformers, e.g. DC/DC converters for surface mounting
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 4.86 \text{ mm}^{-1}$

= 12.6 mm

 $= 2.6 \text{ mm}^2$

 $A_{min}^{c} = 2.5 \text{ mm}^{2}$ $V_{e}^{c} = 33 \text{ mm}^{3}$

Approx. weight 0.16 g/set

2-0,1 5,25±0,1 1.35±0.05 3,9±0,1 FEK0320-F

Ungapped

Material	A _L value nH	μ_{e}	Ordering code
N87	270 +30/–20%	1000	B66303G0000X187
T38	1400 +40/-30%	5190	B66303G0000X138

E 6.3

Core B66300

■ To IEC 61246

- For miniature transformers, e.g. DC/DC converters for surface mounting
- Available with SMD coil former
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 3.7 \text{ mm}^{-1}$

 $I_e = 12.2 \text{ mm}$ $A_e = 3.3 \text{ mm}^2$

 $A_{e} = 3.3 \text{ mm}^2$ $A_{min} = 2.6 \text{ mm}^2$

 $V_e = 40.3 \text{ mm}^3$

Approx. weight 0.24 g/set

6,3-0,25 2-0,1 1,4-0,1 3,6+0,2 FEK0361-H

Ungapped

Material	A _L value nH	μ _e	Ordering code
N87	380 +30/–20%	1120	B66300G0000X187
N30	700 +40/–30%	2059	B66300G0000X130
T38	1700 +40/–30%	4990	B66300G0000X138

E 6.3

B66301 **Accessories**

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

B66301B: Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD

Vectra E 130i [E83005 (M)], TICONA

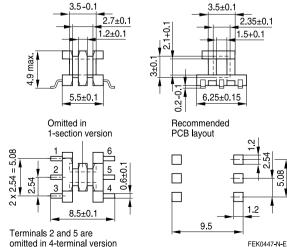
B66301C: Vectra C 130 [E106764 (M)], POLYPLASTICS CO LTD

Solderability: to IEC 60068-2-58, test Td. method 6 (Group 3): 245 °C, 3 s

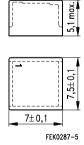
Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see "Processing notes", page 179


Plastic cover cap

Used to protect the transformer against external influences, for stamping and for improved processing on assembly machines


Material: see coil former, color code white

Coil former			Ordering code		
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	
1	1.62	12.8	272	4 6	B66301B1004T001 B66301B1006T001
2	0.9	12.8	490	6	B66301B1006T002
Plastic cov	er cap	B66301C2000X000			

Coil former

Plastic cover cap

Please read Important notes on page 2 and Cautions and warnings on page 609.

E 8.8

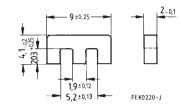
B66302 Core

- To IEC 61246
- For miniature transformers, e.g. DC/DC converters for surface mounting
- Available with SMD coil former
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 3.1 \text{ mm}^{-1}$

= 15.5 mm


 $\tilde{A_e} = 5 \text{ mm}^2$

 $A_{min} = 3.6 \text{ mm}^2$ $V_e = 78 \text{ mm}^3$

Approx. weight 0.50 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	1000 +30/–20%	2460		B66302G0000X130
T38	2100 +40/–30%	5170		B66302G0000X138
N87	550 +30/–20%	1350	< 0.035 (200 mT, 100 kHz, 100 °C)	B66302G0000X187

E 8.8

Accessories B66302

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD

Vectra E 130i [E83005 (M)], TICONA

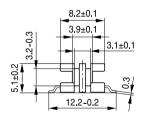
Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

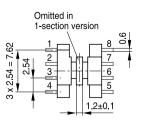
Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

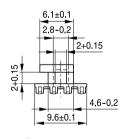
permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

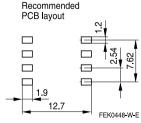
Winding: see "Processing notes", page 179

Plastic cover cap

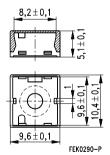

Used to protect the transformer against external influences, for stamping and for improved processing on assembly machines


Material: GFR polyamide (UL 94 V-0, insulation class to IEC 60085: $F \cong \text{max}$, operating temperature 155 °C), color code white


Stanyl TW250F6 [E47960 (M)], DSM ENGINEERING PLASTICS B V


Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	2.7	14.9	190	8	B66302D1008T001
2	1.7	14.9	302	8	B66302D1008T002
Plastic cove	r cap	B66302A2000X000			

Coil former

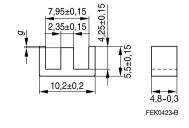


Plastic cover cap

E 10/5.5/5

Core B66322

- Compact E core with large winding area
- Suitable for the design of compact battery chargers
- Gapped cores available for flyback converters
- Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 2.41 \text{ mm}^{-1}$ I₂ = 26.3 mm

 $A_e = 10.9 \text{ mm}^2$

 $A_{min} = 10.4 \text{ mm}^2$

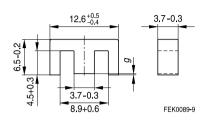
 $V_{\rm e}^{11111} = 287 \, \rm mm^3$

Approx. weight 1.4 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	750 ±25%	1430	< 0.41 (200 mT, 100 kHz, 100 °C)	B66322G0000X127
N87	800 ±25%	1530	< 0.15 (200 mT, 100 kHz, 100 °C)	B66322G0000X187

Core B66305


- To IEC 61246
- For miniature transformers
- Available with SMD coil former
- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 2.39 \text{ mm}^{-1}$ $I_e = 29.6 \text{ mm}$ $A_e = 12.4 \text{ mm}^2$ $A_{min} = 12.2 \text{ mm}^2$

 $V_{\rm p} = 367 \, \rm mm^3$

Approx. weight 2 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	1000 +30/–20%	1900		B66305G0000X130
T46	3600 ±30%	6839		B66305F0000X146
N27	800 +30/–20%	1510	< 0.40 (200 mT, 100 kHz, 100 °C)	B66305G0000X127
N87	850 +30/–20%	1620	< 0.20 (200 mT, 100 kHz, 100 °C)	B66305G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	0.04 ±0.01	250	454	B66305G0040X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	28.4	-0.676	36.5	-0.847	33.2	-0.865
N87	28.4	-0.676	37.5	-0.796	32.1	-0.873

Validity range: K1, K2: 0.03 mm < s < 1.00 mmK3, K4: $30 \text{ nH} < A_1 < 260 \text{ nH}$

Accessories B66202

Coil former (magnetic axis horizontal or vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

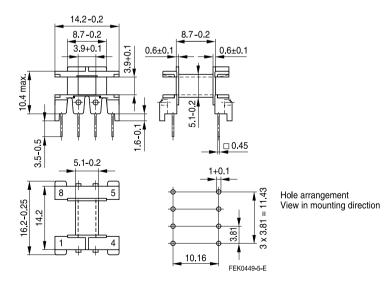
max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], SABIC INNOVATIVE PLASTICS

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

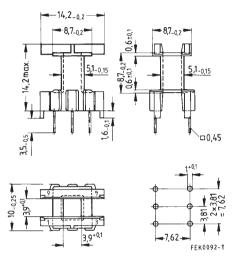
Winding: see "Processing notes", page 178

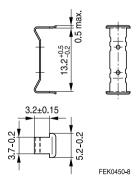

Squared pins.

Yoke

Material: Stainless spring steel (0.2 mm)

Coil former		Ordering code				
Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
Horizontal	1	11.6	27.2	80.6	8	B66202B1108T001
Vertical	1	11.6	27.2	80.6	6	B66202B1106T001
Yoke (order	ing code pe	B66202A2010X000				


Horizontal version


Accessories B66202

Vertical version

Hole arrangement View in mounting direction

Yoke

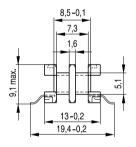
Accessories B66306

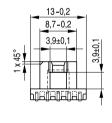
SMD coil former with gullwing terminals

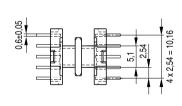
Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

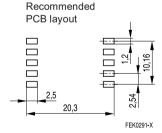
F \triangleq max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD

Vectra E 130i [E83005 (M)], TICONA


Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s


Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s


permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s


Winding: see "Processing notes", page 179

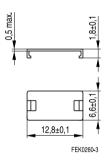
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	Ordering code
1	13.0	27	71	10	B66306C1010T001
2	10.2	27	91	10	B66306C1010T002

Accessories B66414

Cover plate

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F


max. operating temperature 155 °C), color code black

Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD

■ For stamping and for improved processing on assembly machines

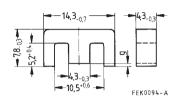
■ See under SMD coil former for material and resistance to soldering heat

	Ordering code
Cover plate	B66414A7000X000

E 14/8/4

Core B66219

■ Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 2.19 \text{ mm}^{-1}$

= 33.9 mm $\bar{A}_{e} = 15.5 \text{ mm}^2$

 $A_{min} = 13.1 \text{ mm}^2$ $V_e = 525 \text{ mm}^3$

Approx. weight 2.8 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	1250 +30/–20%	2170		B66219G0000X130
N27	860 +30/–20%	1490	< 0.11 (200 mT, 25 kHz, 100 °C)	B66219G0000X127

Calculation factors (for formulas, see "E cores: general information", page 402)

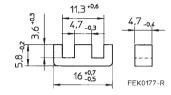
Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	36.8	-0.712	44.6	-0.847	40.8	-0.865	

Validity range: K1, K2: 0.03 mm < s < 1.00 mm

K3, K4: $30 \text{ nH} < A_L < 260 \text{ nH}$

E 16/6/5

Core B66393


■ Shortened leg compared with E 16/8/5

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 1.49 \text{ mm}^{-1}$ = 28.6 mm $A_0 = 19.2 \text{ mm}^2$

 $A_{\min}^{-} = 17.6 \text{ mm}^2$ $V_{\rm e}^{\rm I} = 549 \, \rm mm^3$

Approx. weight 3 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N27	1100 +30/–20%	1300	< 0.10 (200 mT, 25 kHz, 100 °C)	B66393G0000X127
N87	1200 ±25%	1420	< 0.30 (200 mT, 100 kHz, 100 °C)	B66393G0000X187

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	42.0	-0.764	56.7	-0.847	51.7	-0.865	

Validity range: K1, K2: 0.05 mm < s <1.50 mm

K3, K4: 40 nH < A_L <430 nH

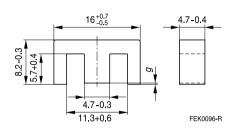
E 16/8/5 (EF 16)

Core B66307

■ To IEC 61246

- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 1.87 \text{ mm}^{-1}$

 $I_e = 37.6 \text{ mm}$

 $A_e = 20.1 \text{ mm}^2$

 $A_{min} = 19.4 \text{ mm}^2$ $V_e = 756 \text{ mm}^3$

Approx. weight 3.6 g/set

Ungapped

Material	A _L -Wert nH	μ _e	P _V W/set	Ordering code
N30	1400 +30/–20%	2080		B66307G0000X130
T46	5100 ±30%	7590		B66307F0000X146
N27	950 +30/–20%	1410	< 0.14 (200 mT, 25 kHz, 100 °C)	B66307G0000X127
N87	1000 +30/-20%	1490	< 0.38 (200 mT, 100 kHz, 100 °C)	B66307G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.06 ±0.01	303	450	B66307G0060X1**
N87	0.10 ±0.02	212	315	B66307G0100X1**
	0.50 ±0.05	69	102	B66307G0500X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

E 16/8/5 (EF 16) Core B66307

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	air gap – A _L value		•			
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	42.2	-0.701	57.0	-0.847	52.1	-0.865
N87	42.2	-0.701	57.8	-0.796	50.4	-0.873

Validity range: K1, K2: 0.05 mm < s < 1.50 mm

K3, K4: $30 \text{ nH} < A_L < 330 \text{ nH}$

E 16/8/5 (EF 16)

Accessories B66308

Coil former (magnetic axis horizontal or vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

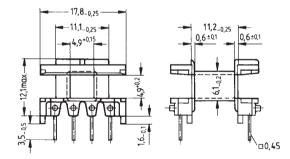
max. operating temperature 155 °C), color code black

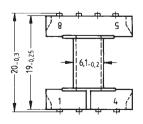
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

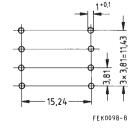
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178

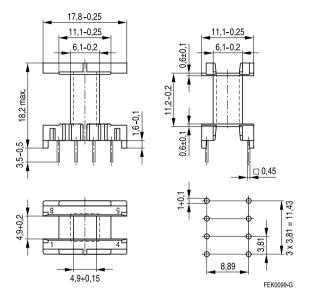

Squared pins.


Yoke

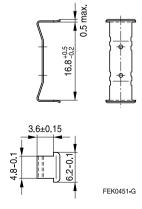

Material: Stainless spring steel (0.2 mm)

Coil former		Ordering code				
Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
Horizontal	1	22.3	34	52.4	8	B66308B1108T001
Vertical	1	22.3	34	52.4	8	B66308W1108T001
Yoke (order	ing code pe	B66308A2010X000				

Horizontal version


Hole arrangement View in mounting direction

E 16/8/5 (EF 16)


Accessories B66308

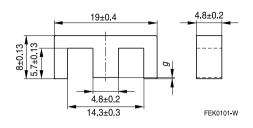
Vertical version

Hole arrangement View in mounting direction

Yoke

E 19/8/5

Core B66379


■ Size based on US lam. size E cores US designation E 187

- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 1.76 mm⁻¹ I_e = 39.6 mm A_e = 22.5 mm² A_{min} = 22.1 mm² V_e = 891 mm³

Approx. weight 4.4 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	1700 +30/–20%	2380		B66379G0000X130
T46	5800 ±30%	8120		B66379F0000X146
N27	1050 +30/–20%	1470	< 0.18 (200 mT, 25 kHz, 100 °C)	B66379G0000X127
N87	1150 +30/–20%	1610	< 0.50 (200 mT, 100 kHz, 100 °C)	B66379G0000X187

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	air gap – A _L value		Calculation of saturation current			
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	46.4	-0.697	63.3	-0.847	57.9	-0.865
N87	46.4 -0.697		64.1	-0.796	56.1	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 40 nH < A_L < 350 nH

Core B66311

■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 1.44 mm⁻¹ I_e = 46.3 mm A_e = 32.1 mm² A_{min} = 31.9 mm² V_e = 1490 mm³ Approx. weight 7.3 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	2150 +30/–20%	2460		B66311G0000X130
N27	1300 +30/–20%	1490	< 0.27 (200 mT, 25 kHz, 100 °C)	B66311G0000X127
N87	1470 +30/–20%	1680	< 0.75 (200 mT, 100 kHz, 100 °C)	B66311G0000X187

Gapped

Material	g	A _L value approx.	μ_{e}	Ordering code ** = 27 (N27)
	mm	nH		= 87 (N87)
N27,	0.09 ±0.01	363	415	B66311G0090X1**
N87	0.17 ±0.02	227	259	B66311G0170X1**
	0.25 ±0.02	171	195	B66311G0250X1**
	0.50 ±0.05	103	118	B66311G0500X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		•			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	61.6	-0.737	88.1	-0.847	80.9	-0.865
N87	61.6 -0.737 8		88.5	-0.796	78.4	-0.873

Validity range: K1, K2: 0.05 mm < s < 1.50 mm

K3, K4: $50 \text{ nH} < A_L < 430 \text{ nH}$

Accessories B66206

Coil former (magnetic axis horizontal or vertical)

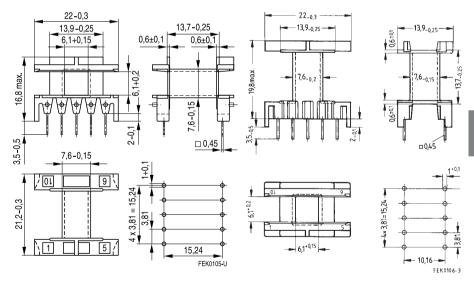
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178 Squared pins. For matching yoke see next page.

Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
Horizontal	1	34	41.2	42	10	B66206B1110T001
Vertical	1	34	41.2	42	10	B66206W1110T001

Horizontal version

Vertical version

Hole arrangement View in mounting direction

Hole arrangement View in mounting direction

Accessories B66206

Coil former (with right-angle pins)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

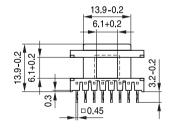
max. operating temperature 155 °C), color code black

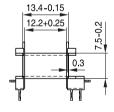
Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

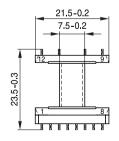
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

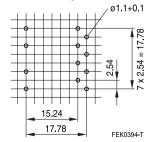
Winding: see "Processing notes", page 178


Squared pins.


Yoke

Material: Stainless spring steel (0.2 mm)


Coil form	ner	Ordering code				
Figure	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	1	34	41.2	42	12	B66206C1012T001
2	1	34	41.2	42	14	B66206C1014T001
3	Yoke (orde	ring code per	B66206A2010X000			


Figure 1, coil former (12 pins)

Hole arrangement View in mounting direction

Accessories B66206

Figure 2, coil former (14 pins)

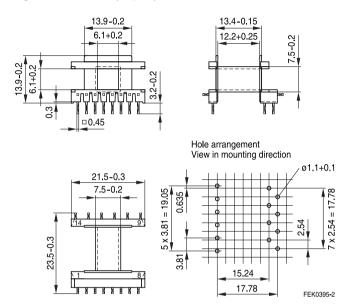
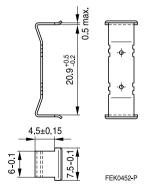



Figure 3, Yoke

Accessories B66206

Coil former for luminaires

Also to be used without clamps

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

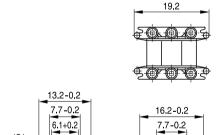
H ≙ max. operating temperature 180 °C), color code black

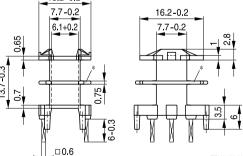
Rynite FR 530° [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

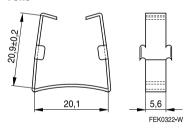
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178


Squared pins.


Yoke

Material: Nickel silver (0.3 mm)


Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	32.7	42.3	44.5	6	B66206J1106T001
2	30.7	42.3	34.4	6	B66206K1106T002
Yoke		•	•		B66206A2001X000

Coil former

Yoke

Hole arrangement View in mounting direction

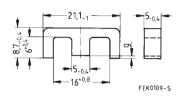
FEK0453-X

^{*} Omitted for one-section version.

E 21/9/5

Core B66314

■ Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 2.01 \text{ mm}^{-1}$ $I_e = 43.4 \text{ mm}$

 $A_e = 21.6 \text{ mm}^2$ $A_{min} = 20.2 \text{ mm}^2$

 $V_{\rm e} = 937 \, \rm mm^3$

Approx. weight 4.8 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	1500 +30/–20%	2390		B66314G0000X130
N27	900 +30/–20%	1440	< 0.18 (200 mT, 25 kHz, 100 °C)	B66314G0000X127

Calculation factors (for formulas, see "E cores: general information", page 402)

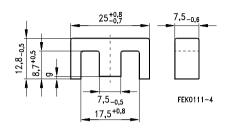
Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	47.4	-0.682	59.9	-0.847	54.9	-0.865	

Validity range: K1, K2: 0.05 mm < s < 1.50 mm

K3, K4: $30 \text{ nH} < A_L < 310 \text{ nH}$

E 25/13/7 (EF 25)

Core B66317


■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 1.1 mm⁻¹ I_e = 57.5 mm A_e = 52.5 mm² A_{min} = 51.5 mm² V_e = 3020 mm³

Approx. weight 16 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N30	2900 +30/–20%	2530		B66317G0000X130
N27	1750 +30/–20%	1520	< 0.59 (200 mT, 25 kHz, 100 °C)	B66317G0000X127
N87	1850 +30/–20%	1620	< 1.60 (200 mT, 100 kHz, 100 °C)	B66317G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.10 ±0.02	489	425	B66317G0100X1**
N87	0.16 ±0.02	347	302	B66317G0160X1**
	0.25 ±0.02	250	218	B66317G0250X1**
	0.50 ±0.05	151	131	B66317G0500X1**
	1.00 ±0.05	91	79	B66317G1000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	90	-0.731	139	-0.847	129	-0.865	
N87	90	-0.731	139	-0.796	125	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm K3, K4: $60 \text{ nH} < A_L < 570 \text{ nH}$

E 25/13/7 (EF 25)

B66208 **Accessories**

Coil former (magnetic axis horizontal or vertical)

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

B66208A, X: F

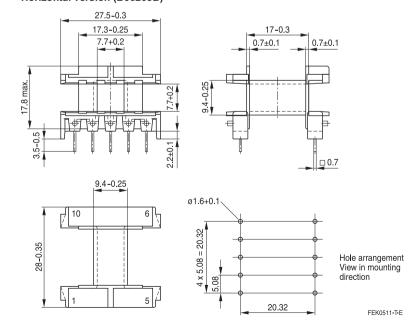
max. operating temperature 155 °C, color code black

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 178

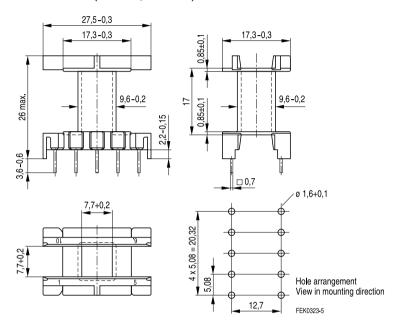
Squared pins.

Yoke Material: Stainless spring steel (0.25 mm)

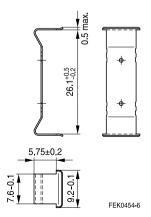
Coil former						Ordering code	
Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins		
Horizontal	1	61	50	28	10	B66208B1110T001	
Vertical	1	61	50	28	10	B66208X1110T001 B66208W1010T001	
Yoke (order	ing code pe	B66208A2010X000					

Horizontal version (B66208B)

Please read Important notes on page 2 and Cautions and warnings on page 609.



B66208


E 25/13/7 (EF 25)

Accessories

Vertical version (B66208X, B66208W)

Yoke

E 25/13/7 (EF 25)

Accessories B66208

Coil former for SMPS transformers with line isolation

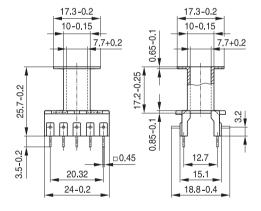
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

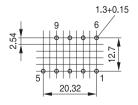
H ≙ max. operating temperature 180 °C), color code black

Rynite FR 530° [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

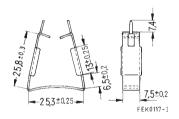

Winding: see "Processing notes", page 178


Squared pins.

Yoke Material: Nickel silver (0.3 mm) with ground terminal

Coil former		Ordering code			
Sections	A _N mm ²	$\begin{array}{ccc} \text{I}_{\text{N}} & & \text{A}_{\text{R}} \text{ value} & \text{Pins} \\ \text{mm} & & \mu \Omega & \end{array}$			
1	56.9	69.2	41.8	9	B66208K1009T001
Yoke (order	ing code per	B66208A2003X000			

Coil former



Hole arrangement View in mounting direction

FEK0479-R-E

Yoke

E 25.4/10/7

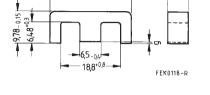
Core B66315

■ Size based on US lam. size E cores US designation E2425

- E cores with high permeability for common-mode chokes and broadband applications
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 1.27 \text{ mm}^{-1}$


L = 49.2 mm

 $A_e = 38.8 \text{ mm}^2$

 $A_{min} = 38.4 \text{ mm}^2$

 $V_e = 1910 \text{ mm}^3$

Approx. weight 9.6 g/set

25,4±0.7

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	2700 +30/–20%	2720		B66315G0000X130
T46	8500 ±30%	8570		B66315F0000X146
N27	1500 +30/–20%	1510	< 0.36 (200 mT, 25 kHz, 100 °C)	B66315G0000X127
N87	1670 +30/–20%	1690	< 1.00 (200 mT, 100 kHz, 100 °C)	B66315G0000X187

Gapped

Material	g	A _L value approx.	μ_{e}	Ordering code
	mm	nH		
N27	0.50 ±0.05	122	123	B66315G0500X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	75	-0.707	106	-0.847	97	-0.865
N87	75	-0.707	106	-0.796	94	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: $50 \text{ nH} < A_L < 500 \text{ nH}$

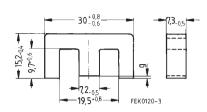
E 30/15/7

Core B66319

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 1.12 \text{ mm}^{-1}$


 $I_e = 67 \text{ mm}$

 $A_e = 60 \text{ mm}^2$

 $A_{min} = 49 \text{ mm}^2$

 $V_{e}^{11111} = 4000 \text{ mm}^{3}$

Approx. weight 22 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	3100 +30/–20%	2760		B66319G0000X130
N27	1700 +30/–20%	1510	< 0.81 (200 mT, 25 kHz, 100 °C)	B66319G0000X127
N87	1900 +30/–20%	1690	< 2.20 (200 mT, 100 kHz, 100 °C)	B66319G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.10 ±0.02	460	410	B66319G0100X1**
N87	0.18 ±0.02	300	265	B66319G0180X1**
	0.34 ±0.02	195	175	B66319G0340X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	90	-0.708	156	-0.847	144	-0.865
N87	90	-0.708	154	-0.796	140	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 560 nH < A_L < 60 nH

E 30/15/7

Accessories B66232

Coil former (magnetic axis horizontal or vertical)

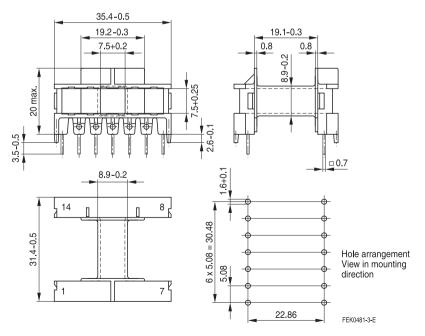
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black B66232A, B: Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

B66232J: Pocan B4235® [E245249 (M)], LANXESS AG

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 178

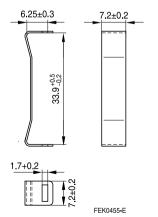
Squared pins.

Yoke Material: Stainless spring steel (0.4 mm)

Coil former						Ordering code
Version	Sections	A _N mm ²	I _N mm	$\begin{array}{c} {\sf A}_{\sf R} \ {\sf value} \\ {\sf \mu} \Omega \end{array}$	Pins	
Horizontal	1	90	56	21	14	B66232B1114T001
Vertical 1 90 56 21 12					B66232J1112T001	
Yoke (ordering code per piece, 2 are required)						B66232A2010X000

Horizontal version

Please read *Important notes* on page 2 and *Cautions and warnings* on page 609.

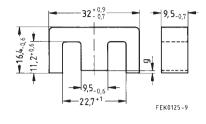

E 30/15/7

Accessories B66232

Vertical version

Yoke

E 32/16/9 (EF 32)


Core B66229

■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.89 mm⁻¹ I_e = 74 mm A_e = 83 mm² A_{min} = 81.4 mm² V_e = 6140 mm³

Approx. weight 30 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N30	3800 +30/–20%	2690		B66229G0000X130
N27	2100 +30/–20%	1480	< 1.10 (200 mT, 25 kHz, 100 °C)	B66229G0000X127
N87	2300 +30/–20%	1630	< 3.00 (200 mT, 100 kHz, 100 °C)	B66229G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.50 ±0.05	244	172	B66229G0500X1**
N87	1.00 ±0.05	145	103	B66229G1000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	flaterial Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	145	-0.748	212	-0.847	196	-0.865
N87	145 -0.748		208	-0.796	191	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: $70 \text{ nH} < A_1 < 710 \text{ nH}$

E 32/16/9 (EF 32)

Accessories B66230

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

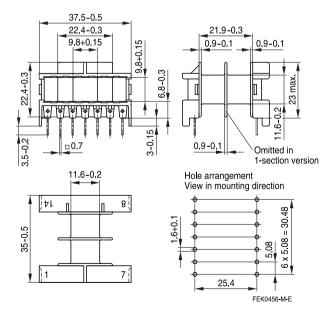
max. operating temperature 155 °C), color code black

Rynite FR 530° [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

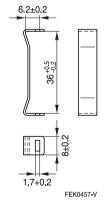
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178


Squared pins.

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	108.50	64.4	20.42	14	B66230A1114T001
Yoke (order	ing code per p	B66230A2010X000			

Coil former

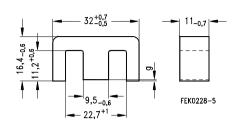
Yoke

E 32/16/11

Core B66233

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.76 \text{ mm}^{-1}$

= 74 mm

 $= 97 \text{ mm}^2$

 $A_{min}^{c} = 95 \text{ mm}^{2}$ $V_{e}^{c} = 7187 \text{ mm}^{3}$

Approx. weight 37 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N87	2900 +30/–20%	1750	< 3.70 (200 mT, 100 kHz, 100 °C)	B66233G0000X187

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	165	-0.711	243	-0.796	223	-0.873	

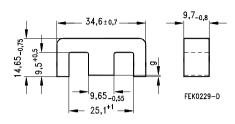
Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: $90 \text{ nH} < A_L < 800 \text{ nH}$

E 34/14/9

Core B66370

■ Size based on US lam. size E cores US designation E375


■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.82 \text{ mm}^{-1}$ $I_e = 69.6 \text{ mm}$ $A_e = 84.8 \text{ mm}^2$ $A_{min} = 83.2 \text{ mm}^2$

 V_e = 5900 mm³

Approx. weight 30 g/set

Approx. weight 30 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N27	2300 +30/–20%	1498	< 1.10 (200 mT, 25 kHz, 100 °C)	B66370G0000X127
N87	2450 +30/–20%	1600	< 3.00 (200 mT, 100 kHz, 100 °C)	B66370G0000X187

Calculation factors (for formulas, see "E cores: general information", page 402)

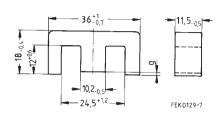
Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	146	-0.719	219	-0.847	202	-0.865	

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 80 nH < A_L < 770 nH

E 36/18/11

Core B66389


■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.68 \text{ mm}^{-1}$ $I_e = 81 \text{ mm}$ $A_e = 120 \text{ mm}^2$ $A_{min} = 112 \text{ mm}^2$

 $V_e = 9720 \text{ mm}^3$

6

Approx. weight 50 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	2900 +30/–20%	1550	< 1.85 (200 mT, 25 kHz, 100 °C)	B66389G0000X127
N87	3100 +30/–20%	1680	< 5.00 (200 mT, 100 kHz, 100 °C)	B66389G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	1.00 ±0.05	183	96	B66389G1000X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	182	-0.749	302	-0.847	280	-0.865
N87	182	-0.749	295	-0.796	273	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 100 nH < A_L < 930 nH

E 36/18/11

Accessories B66390

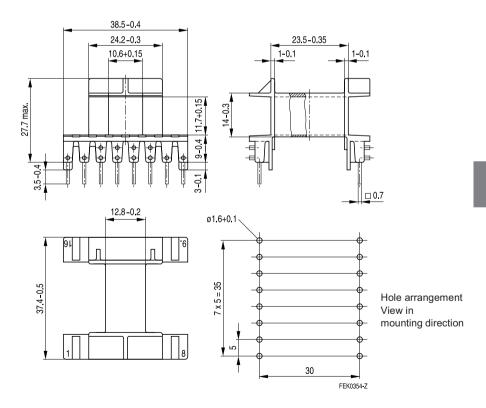
Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Pocan B4235® [E245249 (M)], LANXESS AG


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178

Squared pins.

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	122.55	76.4	21.45	16	B66390A1016T001

E 40/16/12

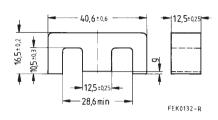
Core B66381

■ Size based on US lam. size E cores US designation E 21

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.52 \text{ mm}^{-1}$


a = 77 mm

 $\tilde{A}_{o} = 149 \text{ mm}^2$

 $A_{min} = 143 \text{ mm}^2$

 $V_e = 11500 \text{ mm}^3$

Approx. weight 58 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N27	3800 +30/–20%	1560	< 2.15 (200 mT, 25 kHz, 100 °C)	B66381G0000X127
N87	4150 +30/–20%	1710	< 5.80 (200 mT, 100 kHz, 100 °C)	B66381G0000X187
N72	4600 +30/–20%	1900	< 1.12 (200 mT, 25 kHz, 100 °C)	B66381G0000X172

Gapped

Material	g	A _L value	μ_{e}	Ordering code
	mm	approx. nH		
	''''''	' ' ' '		
N27	0.50 ±0.05	411	166	B66381G0500X127

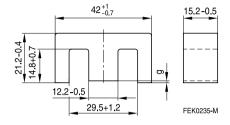
The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	239	-0.782	378	-0.847	351	-0.865	

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 130 nH < A_L < 1200 nH


Core B66325

■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.54 mm⁻¹ I_e = 97 mm A_e = 178 mm² A_{min} = 175 mm² V_e = 17300 mm³

Approx. weight 88 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	3500 +30/–20%	1510	< 3.30 (200 mT, 25 kHz, 100 °C)	B66325G0000X127
N87	3950 +30/–20%	1690	< 9.00 (200 mT, 100 kHz, 100 °C)	B66325G0000X187
N95	5100 +30/–20%	2292	< 9.60 (200 mT, 100 kHz, 25 °C) < 8.70 (200 mT, 100 kHz, 100 °C)	B66325G0000X195
N30	7500 +30/–20%	3252		B66325G0000X130
N97	4100 +30/–20%	1778	< 9.00 (200 mT, 100 kHz, 100 °C)	B66325G0000X197

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	$\begin{array}{c} 0.10 \pm 0.02 \\ 0.25 \pm 0.02 \\ 0.50 \pm 0.05 \\ 0.64 \pm 0.05 \\ 1.00 \pm 0.05 \\ 1.50 \pm 0.05 \end{array}$	1497 759 454 378 272 201	647 328 196 164 118 87	B66325G0100X127 B66325G0250X127 B66325G0500X127 B66325G0640X127 B66325G1000X127 B66325G1500X127

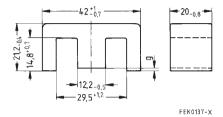
The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	air gap – A _L value		Calculation of saturation current				
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	272	72 –0.741		-0.847	406	-0.865	
N87	272 -0.741		423	-0.796	396	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 1210 nH < A_L < 130 nH


Core B66329

■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.41 mm⁻¹ I_e = 97 mm A_e = 234 mm² A_{min} = 229 mm² V_e = 22700 mm³

Approx. weight 116 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	4750 +30/–20%	1560	320	< 4.4 (200 mT, 25 kHz, 100 °C)	B66329G0000X127
N87	5200 +30/–20%	1690	320	< 12.0 (200 mT, 100 kHz, 100 °C)	B66329G0000X187
N95	6700 +30/–20%	2292	320	< 12.60 (200 mT, 100 kHz, 25 °C) < 11.50 (200 mT, 100 kHz, 100 °C)	
N97	5400 +30/–20%	1781	320	< 10.2 (200 mT, 100 kHz, 100 °C)	B66329G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g	A _L value	μ _e	Ordering code
	mm	approx. nH		
	******	****		
N27	0.25 ±0.02	1029	338	B66329G0250X127
	0.50 ±0.05	603	198	B66329G0500X127
	1.00 ±0.05	354	116	B66329G1000X127
	1.50 ±0.05	259	85	B66329G1500X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value K1 (25 °C) K2 (25 °C)		Calculation of saturation current				
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	354	-0.770	574	-0.847	534	-0.865	
N87	354 -0.770		555	-0.796	521	-0.873	

Validity range: K1, K2: 0.10 mm < s < 3.00 mm

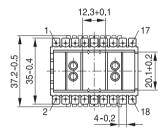
K3, K4: $160 \text{ nH} < A_L < 1500 \text{ nH}$

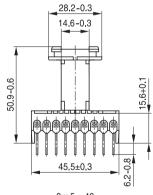
Accessories B66243

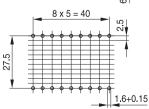
Coil former

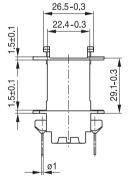
Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F ≙ max. operating temperature 155 °C), color code black


Valox 420-SE0® [E121562 (M)], SABIC INNOVATIVE PLASTICS


Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s


Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 178

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	172	100	20	18	B66243B1018T001

Hole arrangement View in mounting direction

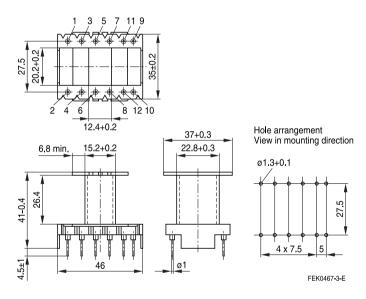
FEK0512-2-E

Accessories B66243

Coil former

Material: Polyterephthalate GV (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code black


Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 178

Sections	A _N mm ²	I _N mm	${\rm A}_{\rm R}$ value ${\rm \mu}\Omega$	Pins	Ordering code
1	187	133	24.4	12	B66243S1012T001

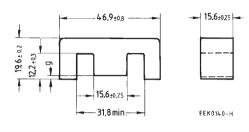
E 47/20/16

Core B66383

■ Size based on US lam. size E cores US designation E 625

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.38 \text{ mm}^{-1}$

 $I_e = 89 \text{ mm}$

 $A_{\rm e} = 233 \, \rm mm^2$

 $A_{min} = 226 \text{ mm}^2$ $V_e = 20700 \text{ mm}^3$

6

Approx. weight 106 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	5100 +30/–20%	1550	320	< 3.95 (200 mT, 25 kHz, 100 °C)	B66383G0000X127
N87	5600 +30/–20%	1690	320	< 11.10 (200 mT, 100 kHz, 100 °C)	B66383G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	364 -0.773		579	-0.847	538	-0.865	
N87	364 -0.773		562	-0.796	524	-0.873	

Validity range: K1, K2: 0.10 mm < s < 3.00 mm

K3, K4: 170 nH < A_L < 1640 nH

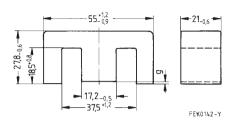
E 55/28/21

Core B66335

■ To IEC 61246

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.35 \text{ mm}^{-1}$ $I_a = 124 \text{ mm}$

 $A_e = 354 \text{ mm}^2$

 $A_{min} = 351 \text{ mm}^2$

 $V_e = 43900 \text{ mm}^3$

Approx. weight 215 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	5800 +30/-20%	1610	320	< 8.00 (200 mT, 25 kHz, 100 °C)	B66335G0000X127
N87	6400 +30/–20%	1780	320	< 3.80 (100 mT, 100 kHz, 100 °C)	B66335G0000X187
N97	6700 +30/–20%	1868	320	< 3.34 (100 mT, 100 kHz, 100 °C)	B66335G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g	A _L value approx.	μ_{e}	Ordering code ** = 27 (N27)
	mm	nH		= 87 (N87)
N27,	0.50 ±0.05	843	234	B66335G0500X1**
N87	1.00 ±0.05	496	138	B66335G1000X1**
	1.50 ±0.05	364	101	B66335G1500X1**
	2.00 ±0.05	292	81	B66335G2000X1**

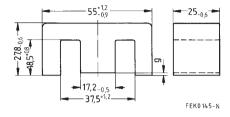
The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	496	96 –0.764		-0.847	781	-0.865
N87	496 -0.764		800	-0.796	765	-0.873

Validity range: K1, K2: 0.15 mm < s < 3.50 mmK3, K4: $180 \text{ nH} < A_1 < 1799 \text{ nH}$

E 55/28/25


B66344 Core

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.3 \text{ mm}^{-1}$ = 124 mm $= 420 \text{ mm}^2$ $A_{min} = 420 \text{ mm}^2$

 $V_e^{111111} = 52100 \text{ mm}^3$

Approx. weight 256 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	6800 +30/–20%	1600	310	< 9.50 (200 mT, 25 kHz, 100 °C)	B66344G0000X127
N87	7300 +30/–20%	1740	310	< 4.80 (100 mT, 100 kHz, 100 °C)	B66344G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	2.50 ±0.05	295	70	B66344G2500X127

The A_1 value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	596	-0.769	992	-0.847	927	-0.865	
N87	596 -0.769 9		950	-0.796	905	-0.873	

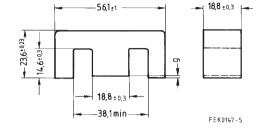
Validity range: K1, K2: 0.15 mm < s < 3.50 mm

K3, K4: 220 nH < A_L < 2130 nH

E 56/24/19

Core B66385

■ Size based on US lam. size E cores US designation E 75


■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.31 \text{ mm}^{-1}$ $I_e = 107 \text{ mm}$

 $A_{\rm e} = 340 \text{ mm}^2$ $A_{\rm min} = 327 \text{ mm}^2$

 $V_e = 36400 \text{ mm}^3$

Approx. weight 184 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	6300 +30/–20%	1570	320	< 6.8 (200 mT, 25 kHz, 100 °C)	B66385G0000X127
N87	6900 +30/–20%	1730	320	< 3.2 (100 mT, 100 kHz, 100 °C)	B66385G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

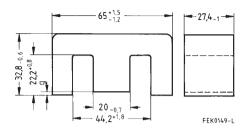
Calculation factors (for formulas, see "E cores: general information", page 402)

Material	air gap – A _L value		Calculation of saturation current				
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	500	-0.784	821	-0.847	765	-0.865	

Validity range: K1, K2: 0.10 mm < s < 3.00 mm

K3, K4: 200 nH < A_L < 2000 nH

E 65/32/27


Core B66387

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.27 mm⁻¹ I_e = 147 mm A_e = 535 mm² A_{min} = 529 mm² V_e = 78650 mm³

Approx. weight 394 g/set

Ungapped

Mate- rial	A _L value nH	μ_{e}	B _S * mT	P _V W/set	Ordering code
N27	7200 +30/–20%	1570	320	< 14.6 (200 mT, 25 kHz, 100 °C)	B66387G0000X127
N87	7900 +30/–20%	1700	320	< 6.7 (100 mT, 100 kHz, 100 °C)	B66387G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.50 ±0.05	1214	265	B66387G0500X1**
N87	1.00 ±0.05	716	156	B66387G1000X1**
	1.50 ±0.05	526	115	B66387G1500X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	air gap – A _L value		Calculation of saturation current				
			K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	716	-0.762	1231	-0.847	1154	-0.865	
N87	716 -0.762		1168	-0.796	1131	-0.873	

Validity range: K1, K2: 0.20 mm < s < 5.00 mm

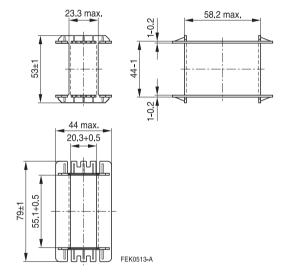
K3, K4: 230 nH < A_L < 2290 nH

E 65/32/27

Accessories B66388

Coil former

Material: Polyphenylene suplhide (UL 94 V-0, insulation class to IEC 60085:


F

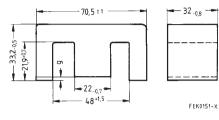
max. operating temperature 155 °C), color code natur

Ryton R-4, [E54700 (M)], CHEVRON PHILLIPS CHEMICAL CO L P

Winding: see "Processing notes", page 178

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	435	246	19.5	_	B66388A2000T001

E 70/33/32


Core B66371

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.22 \text{ mm}^{-1}$ $I_e = 149 \text{ mm}$ $A_e = 683 \text{ mm}^2$ $A_{min} = 676 \text{ mm}^2$

 $V_e^{111111} = 102000 \text{ mm}^3$

Approx. weight 514 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	8850 +30/–20%	1530	320	< 19.00 (200 mT, 25 kHz, 100 °C)	B66371G0000X127
N87	9700 +30/–20%	1700	320	< 9.50 (100 mT, 100 kHz, 100 °C)	B66371G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	1.50 ±0.05	655	113	B66371G1500X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	903	-0.789	1568	-0.847	1470	-0.865
N87	903	-0.789	1485	-0.796	1438	-0.873

Validity range: K1, K2: 0.20 mm < s < 5.00 mm

K3, K4: 290 nH < A_L < 2880 nH

E 70/33/32

Accessories B66372

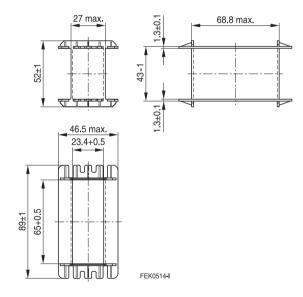
Coil former

Material: B66372A: Polyphenylene suplhide, UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code natur

Ryton R-4, [E54700 (M)], CHEVRON PHILLIPS CHEMICAL CO L P


B66372A: GFR ASA/ PBT, UL 94 HB, insulation class to IEC 60085:

H ≙ max. operating temperature 130 °C), color code black

Ultradur 4090G6 [E41871 (M)], BASF SE

Winding: see "Processing notes", page 178

Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	Ordering code
1	389	230.5	20	_	B66372A2000T001 B66372B2000T001

E 80/38/20

Core B66375

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.47 \text{ mm}^{-1}$ $I_e = 184 \text{ mm}$ $A_e = 390 \text{ mm}^2$ $A_{min} = 388 \text{ mm}^2$

 $V_{\rm e} = 71800 \, \rm mm^3$

-202-_{0.8} -58.9 * 26.

80 ± 1,8 -

20,2 -0,8

Approx. weight 358 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	4150 +30/–20%	1550	320	< 13.30 (200 mT, 25 kHz, 100 °C)	B66375G0000X127
N87	4500 +30/–20%	1680	320	< 6.50 (100 mT, 100 kHz, 100 °C)	B66375G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	0.50 ±0.05	882	329	B66375G0500X127

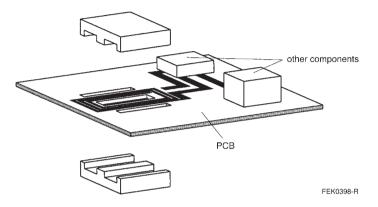
The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	539	-0.710	867	-0.847	816	-0.865
N87	539 -0.710		804	-0.796	806	-0.873

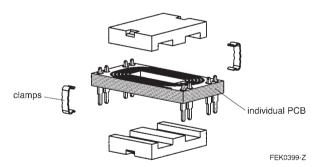
Validity range: K1, K2: 0.20 mm < s < 5.00 mm

K3, K4: 140 nH < A_L < 1330 nH


ELP cores

General information

Example of an assembly set


1 Total integration

Assembling by gluing technology (ELP without clamp recess)

2 Individual integration

Assembling by clamping technology (ELP with clamp recess)

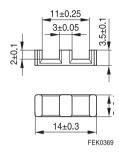
ELP 14/3.5/5

Core (without clamp recess)

B66281

Core set EELP 14

Combination: ELP 14/3.5/5 with ELP 14/3.5/5


■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 1.45 mm⁻¹ I_e = 20.7 mm A_e = 14.3 mm² A_{min} = 13.9 mm² V_e = 296 mm³

Approx. weight 1.6 g/set

ELP 14/3.5/5

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	800 ±25%	920	< 0.08 (50 mT, 500 kHz, 100 °C)	B66281G0000X149
N92	850 ±25%	980	< 0.22 (200 mT, 100 kHz, 100 °C)	B66281G0000X192
N87	1100 ±25%	1270	< 0.20 (200 mT, 100 kHz, 100 °C)	B66281G0000X187
N95	1300 ±25%	1225	< 0.20 (200 mT, 100 kHz, 25 °C) < 0.18 (200 mT, 100 kHz, 100 °C)	B66281G0000X195
N97	1150 ±25%	1320	< 0.16 (200 mT, 100 kHz, 100 °C)	B66281G0000X197

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 14:

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	29.0 -0.772		47	-0.796	39	-0.873	

Validity range: K1, K2: 0.05 mm < s < 1.00 mm

K3, K4: 20 nH < A_L < 200 nH

ELP 14/3.5/5 with I 14/1.5/5

Core (without clamp recess)

B66281

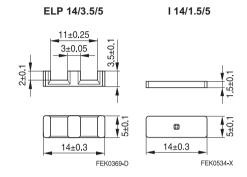
Core set EILP 14 Combination:

ELP 14/3.5/5 with I 14/1.5/5

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 1.15 \text{ mm}^{-1}$

 $I_{\rm e} = 16.7 \, \rm mm$

 $A_e = 14.5 \text{ mm}^2$

 $A_{min} = 13.9 \text{ mm}^2$ $V_e = 242 \text{ mm}^3$

Approx. weight 1.3 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	850 ±25%	780	< 0.06 (50 mT, 500 kHz, 100 °C)	B66281G0000X149 (ELP core) B66281K0000X149 (I core)*
N92	900 ±25%	820	< 0.18 (200 mT, 100 kHz, 100 °C)	B66281G0000X192 (ELP core) B66281K0000X192 (I core)*
N87	1250 ±25%	1140	< 0.16 (200 mT, 100 kHz, 100 °C)	B66281G0000X187 (ELP core) B66281K0000X187 (I core)*
N97	1300 ±25%	1190	< 0.13 (200 mT, 100 kHz, 100 °C)	B66281G0000X197 (ELP core) B66281K0000X197 (I core)*

^{*} Plate-type tool type

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 14:

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	38.7	-0.691	49	-0.796	40	-0.873	

Validity range: K1, K2: 0.05 mm < s < 1.00 mm

K3, K4: 20 nH < A_L < 200 nH

ELP 18/4/10

Core and accessories (with clamp recess)

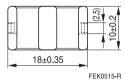
B66283, B65804

Core set EELP 18

Combination: ELP 18/4/10 with ELP 18/4/10

■ To IEC 62317-9

■ Delivery mode: single units


Magnetic characteristics (per set)

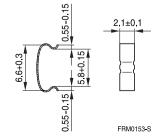
 Σ I/A = 0.62 mm⁻¹ I_e = 24.3 mm A_e = 39.3 mm² A_{min} = 38.9 mm² V_e = 955 mm³

Approx. weight 4.8 g/set

ELP 18/4/10

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	1900 ±25%	930	< 0.25 (50 mT, 500 kHz, 100 °C)	B66283G0000X149
N92	2050 ±25%	1010	< 0.66 (200 mT, 100 kHz, 100 °C)	B66283G0000X192
N87	2600 ±25%	1270	< 0.60 (200 mT, 100 kHz, 100 °C)	B66283G0000X187
N97	2670 ±25%	1314	< 0.47 (200 mT, 100 kHz, 100 °C)	B66283G0000X197


Calculation factors (for formulas, see "E cores: general information", page 402) EELP 18:

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	71.1	-0.773	124	-0.796	104	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A_L < 500 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B65804P2204X000

ELP 18/4/10 with I 18/2/10

Core and accessories (with clamp recess)

B66283

Core set EILP 18 Combination:

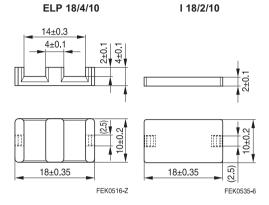
ELP 18/4/10 with I 18/2/10

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.51 \text{ mm}^{-1}$


= 20.3 mm

 $= 39.5 \text{ mm}^2$

 $A_{min} = 38.9 \text{ mm}^2$

 $V_{e} = 802 \text{ mm}^{3}$

Approx. weight 4.1 g/set

Ungapped

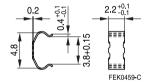
Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	2100 ±25%	860	< 0.20 (50 mT, 500 kHz, 100 °C)	B66283G0000X149 (ELP core) B66283K0000X149 (I core)*
N92	2300 ±25%	930	< 0.55 (200 mT, 100 kHz, 100 °C)	B66283G0000X192 (ELP core) B66283K0000X192 (I core)*
N87	2900 ±25%	1180	< 0.50 (200 mT, 100 kHz, 100 °C)	B66283G0000X187 (ELP core) B66283K0000X187 (I core)*
N97	3000 ±25%	1230	< 0.42 (200 mT, 100 kHz, 100 °C)	B66283G0000X197 (ELP core) B66283K0000X197 (I core)*

^{*} Plate-type tool type

ELP 18/4/10 with I 18/2/10

Core and accessories (with clamp recess)

B66284


Calculation factors (for formulas, see "E cores: general information", page 402) EILP 18:

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	77.4 -0.774		129	-0.796	107	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 50 nH < A_L < 500 nH

Clamp

Ordering code per piece, 2 pieces required Ordering code: B66284F2204X000

ELP 18/4/10

Core (without clamp recess)

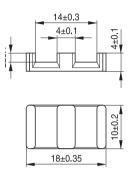
B66453

Core set EELP 18

Combination: ELP 18/4/10 with ELP 18/4/10

■ To IEC 62317-9

■ Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 0.62 \text{ mm}^{-1}$ $I_e = 24.3 \text{ mm}$

 \bar{A}_{e} = 39.3 mm² A_{min} = 38.9 mm²

 $V_{\rm e}^{11111} = 955 \, \rm mm^3$

Approx. weight 4.8 g/set

ELP 18/4/10

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	1900 ±25%	930	< 0.25 (50 mT, 500 kHz, 100 °C)	B66453G0000X149
N92	2050 ±25%	1010	< 0.66 (200 mT, 100 kHz, 100 °C)	B66453G0000X192
N87	2600 ±25%	1270	< 0.60 (200 mT, 100 kHz, 100 °C)	B66453G0000X187
N97	2650 ±25%	1300	< 0.50 (200 mT, 100 kHz, 100 °C)	B66453G0000X197

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 18:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	71.1	-0.773	124	-0.796	104	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 50 nH < A_L < 500 nH

ELP 18/4/10 with I 18/2/10

Core (without clamp recess)

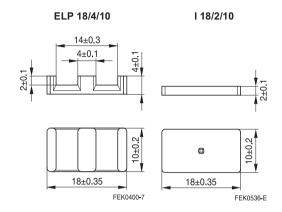
B66453

Core set EILP 18 Combination:

ELP 18/4/10 with I 18/2/10

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.51 \text{ mm}^{-1}$

 $I_e = 20.3 \text{ mm}$

 $A_e = 39.5 \text{ mm}^2$ $A_{min} = 38.9 \text{ mm}^2$

 $V_{e} = 802 \text{ mm}^{3}$

Approx. weight 4.1 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N49	2100 ±25%	860	< 0.20 (50 mT, 500 kHz, 100 °C)	B66453G0000X149 (ELP core) B66453K0000X149 (I core)*
N92	2300 ±25%	930	< 0.55 (200 mT, 100 kHz, 100 °C)	B66453G0000X192 (ELP core) B66453K0000X192 (I core)*
N87	2900 ±25%	1180	< 0.50 (200 mT, 100 kHz, 100 °C)	B66453G0000X187 (ELP core) B66453K0000X187 (I core)*
N97	3000 ±25%	1230	< 0.42 (200 mT, 100 kHz, 100 °C)	B66453G0000X197 (ELP core) B66453K0000X197 (I core)*

^{*} Plate-type tool type

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 18:

Material	Relationship between air gap – A _L value		Calculation of saturation current					
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)		
N87	77.4	-0.774	129	-0.796	107	-0.873		

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: $50 \text{ nH} < A_L < 500 \text{ nH}$

ELP 22/6/16

Core (with clamp recess)

B66285

FEK0518-G

Core set EELP 22

Combination: ELP 22/6/16 with ELP 22/6/16

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.41 mm⁻¹ I_e = 32.5 mm A_e = 78.3 mm² A_{min} = 77.9 mm² V_e = 2540 mm³

Approx. weight 13 g/set

16.8±0.4 5±0.1 10.4 5±0.1 10.4

ELP 22/6/16

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3100 ±25%	1010	250	< 0.65 (50 mT, 500 kHz, 100 °C)	B66285G0000X149
N92	3400 ±25%	1110	350	< 1.65 (200 mT, 100 kHz, 100 °C)	B66285G0000X192
N87	4500 ±25%	1470	300	< 1.50 (200 mT, 100 kHz, 100 °C)	B66285G0000X187
N97	4600 ±25%	1520	310	< 1.20 (200 mT, 100 kHz, 100 °C)	B66285G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) **EELP 22:**

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	126	-0.814	232	-0.796	200	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

ELP 22/6/16 with I 22/2.5/16

Core and accessories (with clamp recess)

B66285

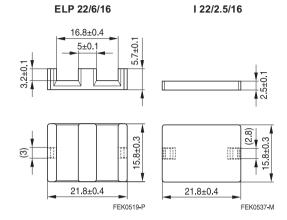
Core set EILP 22 Combination:

ELP 22/6/16 with I 22/2.5/16

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.33 \text{ mm}^{-1}$


I_e = 26.1 mm

 $A_0 = 78.5 \text{ mm}^2$

 $A_{min} = 77.9 \text{ mm}^2$

 $V_e = 2050 \text{ mm}^3$

Approx. weight 10.5 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3700 ±25%	960	250	< 0.50 (50 mT, 500 kHz, 100 °C)	B66285G0000X149 (ELP core) B66285K0000X149 (I core)**
N92	4000 ±25%	1050	350	< 1.38 (200 mT, 100 kHz, 100 °C)	B66285G0000X192 (ELP core) B66285K0000X192 (I core)**
N87	5200 ±25%	1360	300	< 1.25 (200 mT, 100 kHz, 100 °C)	B66285G0000X187 (ELP core) B66285K0000X187 (I core)**
N97	5250 ±25%	1390	310	< 1.00 (200 mT, 100 kHz, 100 °C)	B66285G0000X197 (ELP core) B66285K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

^{**} Plate-type tool type

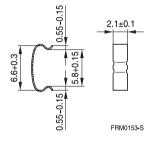
ELP 22/6/16 with I 22/2.5/16

Core and accessories (with clamp recess)

B65804

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 22:

Material	Relationship between		Calculation of saturation current			
	air gap – A _L value					
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	134	-0.806	243	-0.796	206	-0.873


Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 100 nH < A_L < 700 nH

Clamp

Ordering code per piece, 2 pieces required

Ordering code: B65804P2204X000

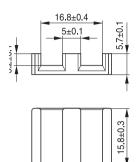
ELP 22/6/16

Core (without clamp recess)

B66455

Core set EELP 22

Combination: ELP 22/6/16 with ELP 22/6/16


■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.41 \text{ mm}^{-1}$ = 32.5 mm $A_{\rm p} = 78.3 \, \rm mm^2$ $A_{min} = 77.9 \text{ mm}^2$ $V_e = 2540 \text{ mm}^3$

Approx. weight 13 g/set

21.8±0.4

ELP 22/6/16

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3100 ±25%	1010	250	< 0.65 (50 mT, 500 kHz, 100 °C)	B66455G0000X149
N92	3400 ±25%	1110	350	< 1.65 (200 mT, 100 kHz, 100 °C)	B66455G0000X192
N87	4500 ±25%	1470	300	< 1.50 (200 mT, 100 kHz, 100 °C)	B66455G0000X187
N97	4600 ±25%	1520	310	< 1.20 (200 mT, 100 kHz, 100 °C)	B66455G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) **EELP 22:**

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	126	-0.814	232	-0.796	200	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 100 nH < A_I < 700 nH

ELP 22/6/16 with I 22/2.5/16

Core (without clamp recess)

B66455

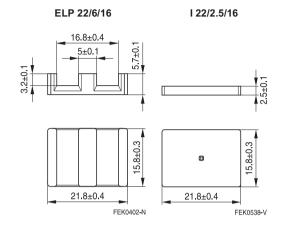
Core set EILP 22 Combination:

ELP 22/6/16 with I 22/2.5/16

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.33 \text{ mm}^{-1}$


 $I_{\rm e} = 26.1 \, \rm mm$

 $\tilde{A}_{0} = 78.5 \text{ mm}^{2}$

 $A_{min} = 77.9 \text{ mm}^2$

 $V_e = 2050 \text{ mm}^3$

Approx. weight 10.5 g/set

Ungapped

Mate- rial	A _L value nH	μ_{e}	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3700 ±25%	960	250	< 0.50 (50 mT, 500 kHz, 100 °C)	B66455G0000X149 (ELP core) B66455K0000X149 (I core)**
N92	4000 ±25%	1050	350	< 1.38 (200 mT, 100 kHz, 100 °C)	B66455G0000X192 (ELP core) B66455K0000X192 (I core)**
N87	5200 ±25%	1360	300	< 1.25 (200 mT, 100 kHz, 100 °C)	B66455G0000X187 (ELP core) B66455K0000X187 (I core)**
N97	5250 ±25%	1390	310	< 1.00 (200 mT, 100 kHz, 100 °C)	B66455G0000X197 (ELP core) B66455K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 22:

Material	Relationship air gap – A _L		Calculation o	f saturation cu	ırrent	
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	134 -0.806		243	-0.796	206	-0.873

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

^{**} Plate-type tool type

ELP 32/6/20

Core and accessories (with clamp recess)

B66287, B65808

ELP 32/6/20

Core set EELP 32

Combination: ELP 32/6/20 with ELP 32/6/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.32 mm⁻¹ I_e = 41.4 mm A_e = 130 mm² A_{min} = 128 mm² V_e = 5390 mm³

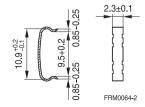
Approx. weight 28 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3900 ±25%	990	250	< 1.40 (50 mT, 500 kHz, 100 °C)	B66287G0000X149
N92	4300 ±25%	1090	350	< 3.70 (200 mT, 100 kHz, 100 °C)	B66287G0000X192
N87	5700 ±25%	1450	300	< 3.40 (200 mT, 100 kHz, 100 °C)	B66287G0000X187
N97	5700 ±25%	1440	310	< 2.60 (200 mT, 100 kHz, 100 °C)	B66287G0000X197
N95	6900 ±25%	1740	310	< 3.40 (200 mT, 100 kHz, 25 °C) < 3.10 (200 mT, 100 kHz, 100 °C)	B66287G0000X195

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 32:


Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	208	-0.819	367	-0.796	322	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm K3, K4: 150 nH < A_L < 1000 nH

Clamp

Ordering code per piece, 2 pieces required

Ordering code: B65808J2204X000

ELP 32/6/20 with I 32/3/20

Core and accessories (with clamp recess)

B66287

Core set EILP 32 Combination:

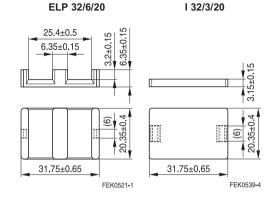
ELP 32/6/20 with I 32/3/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.27 \text{ mm}^{-1}$


 $l_{p} = 35.1 \text{ mm}$

 $A_0 = 130 \text{ mm}^2$

 $A_{min} = 128 \text{ mm}^2$

 $V_e = 4560 \text{ mm}^3$

Approx. weight 24 g/set

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	4400 ±25%	950	250	< 1.20 (50 mT, 500 kHz, 100 °C)	B66287G0000X149 (ELP core) B66287K0000X149 (I core)**
N92	4800 ±25%	1031	350	< 3.20 (200 mT, 100 kHz, 100 °C)	B66287G0000X192 (ELP core) B66287K0000X192 (I core)**
N87	6300 ±25%	1350	300	< 2.90 (200 mT, 100 kHz, 100 °C)	B66287G0000X187 (ELP core) B66287K0000X187 (I core)**
N97	6300 ±25%	1350	310	< 2.20 (200 mT, 100 kHz, 100 °C)	B66287G0000X197 (ELP core) B66287K0000X197 (I core)**
N95	7550 ±25%	1618	310	< 2.90 (200 mT, 100 kHz, 25 °C) < 2.60 (200 mT, 100 kHz, 100 °C)	B66287G0000X195 (ELP core) B66287K0000X195 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

^{**} Plate-type tool type

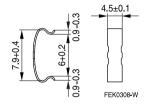
ELP 32/6/20 with I 32/3/20

Core and accessories (with clamp recess)

B66288

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 32:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	234	-0.777	379	-0.796	329	-0.873	


Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: 150 nH < A_L < 1000 nH

Clamp

Ordering code per piece, 2 pieces required

Ordering code: B66288F2204X000

ELP 32/6/20

Core (without clamp recess)

B66457

Core set EELP 32

Combination: ELP 32/6/20 with ELP 32/6/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.32 \text{ mm}^{-1}$ $I_e = 41.4 \text{ mm}$ $A_e = 130 \text{ mm}^2$ $A_{min} = 128 \text{ mm}^2$

 $V_e = 5390 \text{ mm}^3$

Approx. weight 28 g/set

25.4±0.5 6.35±0.15 70±0.65

ELP 32/6/20

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	3900 ±25%	990	250	< 1.40 (50 mT, 500 kHz, 100 °C)	B66457G0000X149
N92	4300 ±25%	1090	350	< 3.70 (200 mT, 100 kHz, 100 °C)	B66457G0000X192
N87	5700 ±25%	1450	300	< 3.40 (200 mT, 100 kHz, 100 °C)	B66457G0000X187
N97	5700 ±25%	1440	310	< 2.60 (200 mT, 100 kHz, 100 °C)	B66457G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 32:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	208	-0.819	367	-0.796	322	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

ELP 32/6/20 with I 32/3/20

Core (without clamp recess)

B66457

Core set EILP 32 Combination:

ELP 32/6/20 with I 32/3/20

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.27 \text{ mm}^{-1}$

I_e = 35.1 mm

 $A_0 = 130 \text{ mm}^2$

 $A_{min} = 128 \text{ mm}^2$

 $V_e = 4560 \text{ mm}^3$

Approx. weight 24 g/set

Ungapped

Mate- rial	A _L value nH	μ_{e}	B _S * mT	P _V W/set	Ordering code (per piece)
N49	4400 ±25%	950	250	< 1.20 (50 mT, 500 kHz, 100 °C)	B66457G0000X149 (ELP core) B66457K0000X149 (I core)**
N92	4800 ±25%	1031	350	< 3.20 (200 mT, 100 kHz, 100 °C)	B66457G0000X192 (ELP core) B66457K0000X192 (I core)**
N87	6300 ±25%	1350	300	< 2.90 (200 mT, 100 kHz, 100 °C)	B66457G0000X187 (ELP core) B66457K0000X187 (I core)**
N97	6300 ±25%	1350	310	< 2.20 (200 mT, 100 kHz, 100 °C)	B66457G0000X197 (ELP core) B66457K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 32:

Material	Relationship air gap – A _L v		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	234 –0.777		379	-0.796	329	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

^{**} Plate-type tool type

ELP 38/8/25

Core (with clamp recess)

B66289

Core set EELP 38

Combination: ELP 38/8/25 with ELP 38/8/25

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.27 mm⁻¹ I_e = 52.4 mm A_e = 194 mm² A_{min} = 192 mm² V_e = 10200 mm³

Approx. weight 52 g/set

38.1±0.8 SEKN0523-H FEKN0523-H

ELP 38/8/25

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	4850 ±25%	1040	250	< 2.60 (50 mT, 500 kHz, 100 °C)	B66289G0000X149
N92	5400 ±25%	1160	350	< 6.65 (200 mT, 100 kHz, 100 °C)	B66289G0000X192
N87	7200 ±25%	1550	300	< 6.05 (200 mT, 100 kHz, 100 °C)	B66289G0000X187
N97	7400 ±25%	1590	310	< 5.15 (200 mT, 100 kHz, 100 °C)	B66289G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 38:

Material	Relationship	between	Calculation of saturation current			
	air gap – A _L v	value				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	302 -0.815		522	-0.796	466	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

ELP 38/8/25 with I 38/4/25

Core (with clamp recess)

B66289

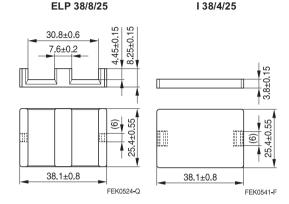
Core set EILP 38 Combination:

ELP 38/8/25 with I 38/4/25

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.22 \text{ mm}^{-1}$


 $I_e = 43.6 \text{ mm}$

 $A_0 = 194 \text{ mm}^2$

 $A_{min} = 192 \text{ mm}^2$

 $V_e = 8460 \text{ mm}^3$

Approx. weight 44 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5700 ±25%	1000	250	< 2.20 (50 mT, 500 kHz, 100 °C)	B66289G0000X149 (ELP core) B66289K0000X149 (I core)**
N92	6200 ±25%	1110	350	< 5.30 (200 mT, 100 kHz, 100 °C)	B66289G0000X192 (ELP core) B66289K0000X192 (I core)**
N87	8300 ±25%	1450	300	< 5.15 (200 mT, 100 kHz, 100 °C)	B66289G0000X187 (ELP core) B66289K0000X187 (I core)**
N97	8400 ±25%	1500	310	< 4.40 (200 mT, 100 kHz, 100 °C)	B66289G0000X197 (ELP core) B66289K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 38:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	328	-0.788	541	-0.796	477	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

^{**} Plate-type tool type

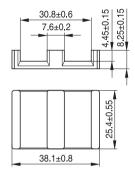
ELP 38/8/25

Core (without clamp recess)

B66459

Core set EELP 38

Combination: ELP 38/8/25 with ELP 38/8/25


■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.27 mm⁻¹ I_e = 52.4 mm A_e = 194 mm² A_{min} = 192 mm² V_e = 10200 mm³

Approx. weight 52 g/set

ELP 38/8/25

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	4850 ±25%	1040	250	< 2.60 (50 mT, 500 kHz, 100 °C)	B66459G0000X149
N92	5400 ±25%	1160	350	< 6.65 (200 mT, 100 kHz, 100 °C)	B66459G0000X192
N87	7200 ±25%	1550	300	< 6.05 (200 mT, 100 kHz, 100 °C)	B66459G0000X187
N97	7400 ±25%	1590	310	< 5.15 (200 mT, 100 kHz, 100 °C)	B66459G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 38:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	302 -0.815		522	-0.796	466	-0.873	

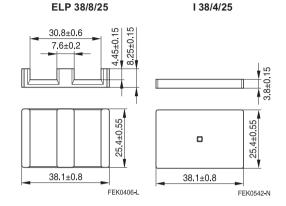
Validity range: K1, K2: 0.10 mm < s < 2.00 mm

ELP 38/8/25 with I 38/4/25

Core (without clamp recess)

B66459

Core set EILP 38 Combination:


ELP 38/8/25 with I 38/4/25

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.22 \text{ mm}^{-1}$ $I_e = 43.6 \text{ mm}$ $A_e = 194 \text{ mm}^2$ $A_{min} = 192 \text{ mm}^2$ $V_e = 8440 \text{ mm}^3$

Approx. weight 44 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5700 ±25%	1000	250	< 2.20 (50 mT, 500 kHz, 100 °C)	B66459G0000X149 (ELP core) B66459K0000X149 (I core)**
N92	6200 ±25%	1110	350	< 5.30 (200 mT, 100 kHz, 100 °C)	B66459G0000X192 (ELP core) B66459K0000X192 (I core)**
N87	8300 ±25%	1450	300	< 5.15 (200 mT, 100 kHz, 100 °C)	B66459G0000X187 (ELP core) B66459K0000X187 (I core)**
N97	8400 ±25%	1500	310	< 4.40 (200 mT, 100 kHz, 100 °C)	B66459G0000X197 (ELP core) B66459K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 38:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	328	-0.788	541	-0.796	477	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

^{**} Plate-type tool type

ELP 43/10/28

Core (with clamp recess)

B66291

FEK0526-7

Core set EELP 43

Combination: ELP 43/10/28 with ELP 43/10/28

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.274 \text{ mm}^{-1}$

 $I_e = 61.6 \text{ mm}$

 $A_{\rm p} = 225 \, \rm mm^2$

 $A_{min} = 217 \text{ mm}^2$

 $V_{\rm e}^{11111} = 13748 \text{ mm}^3$

Approx. weight 70 g/set

ELP 43/10/28

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5000 ±25%	1070	250	< 3.5 (50 mT, 500 kHz, 100 °C)	B66291G0000X149
N92	5500 ±25%	1170	350	< 9.0 (200 mT, 100 kHz, 100 °C)	B66291G0000X192
N87	7300 ±25%	1560	300	< 8.0 (200 mT, 100 kHz, 100 °C)	B66291G0000X187
N97	7500 ±25%	1590	310	< 7.0 (200 mT, 100 kHz, 100 °C)	B66291G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 43:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	358	-0.794	597	-0.796	540	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 200 nH < A_L < 2200 nH

ELP 43/10/28 with I 43/4/28

Core (with clamp recess)

B66291

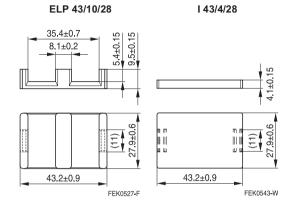
Core set EILP 43 Combination:

ELP 43/10/28 with I 43/4/28

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.225 \text{ mm}^{-1}$


 $I_{e} = 50.8 \text{ mm}$

 $A_{p} = 225 \text{ mm}^2$

 $A_{min} = 217 \text{ mm}^2$

 $V_e = 11430 \text{ mm}^3$

Approx. weight 60 g/set

Ungapped

Mate- rial	A _L value nH	μ_{e}	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5900 ±25%	1030	250	< 3.0 (50 mT, 500 kHz, 100 °C)	B66291G0000X149 (ELP core) B66291K0000X149 (I core)**
N92	6400 ±25%	1120	350	< 7.8 (200 mT, 100 kHz, 100 °C)	B66291G0000X192 (ELP core) B66291K0000X192 (I core)**
N87	8500 ±25%	1480	300	< 7.0 (200 mT, 100 kHz, 100 °C)	B66291G0000X187 (ELP core) B66291K0000X187 (I core)**
N97	8700 ±25%	1525	310	< 6.0 (200 mT, 100 kHz, 100 °C)	B66291G0000X197 (ELP core) B66291K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 43:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	390 -0.784		621	-0.796	553	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 200 nH < A_I < 2200 nH

^{**} Plate-type tool type

ELP 43/10/28

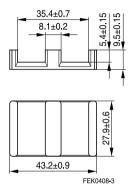
Core (without clamp recess)

B66461

Core set EELP 43

Combination: ELP 43/10/28 with ELP 43/10/28

■ To IEC 62317-9


■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.274 mm⁻¹ I_e = 61.6 mm A_e = 225 mm² A_{min} = 217 mm²

 $V_e = 13748 \text{ mm}^3$

Approx. weight 70 g/set

ELP 43/10/28

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5000 ±25%	1070	250	< 3.50 (50 mT, 500 kHz, 100 °C)	B66461G0000X149
N92	5500 ±25%	1170	350	< 9.00 (200 mT, 100 kHz, 100 °C)	B66461G0000X192
N87	7300 ±25%	1560	300	< 8.00 (200 mT, 100 kHz, 100 °C)	B66461G0000X187
N97	7500 ±25%	1590	310	< 7.00 (200 mT, 100 kHz, 100 °C)	B66461G0000X197
N95	9000 ±25%	2012	310	< 8.25 (200 mT, 100 kHz, 25 °C) < 7.50 (200 mT, 100 kHz, 100 °C)	B66461G0000X195

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 43:

Material	Relationship air gap – A _L v		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	358	-0.794	597	-0.796	540	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 200 nH < A_I < 2200 nH

ELP 43/10/28 with I 43/4/28

Core (without clamp recess)

B66461

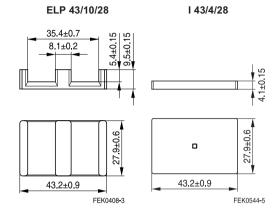
Core set EILP 43 Combination:

ELP 43/10/28 with I 43/4/28

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.225 \text{ mm}^{-1}$


 $I_{\rm e} = 50.8 \, \rm mm$

 $\tilde{A}_{e} = 225 \text{ mm}^2$

 $A_{min} = 217 \text{ mm}^2$

 $V_e = 11430 \text{ mm}^3$

Approx. weight 60 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	5900 ±25%	1030	250	< 3.0 (50 mT, 500 kHz, 100 °C)	B66461G0000X149 (ELP core) B66461K0000X149 (I core)**
N92	6400 ±25%	1120	350	< 7.8 (200 mT, 100 kHz, 100 °C)	B66461G0000X192 (ELP core) B66461K0000X192 (I core)**
N87	8500 ±25%	1480	300	< 7.0 (200 mT, 100 kHz, 100 °C)	B66461G0000X187 (ELP core) B66461K0000X187 (I core)**
N97	8700 ±25%	1525	310	< 6.0 (200 mT, 100 kHz, 100 °C)	B66461G0000X197 (ELP core) B66461K0000X197 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 43:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	390 -0.784		621	-0.796	553	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: 200 nH < A_I < 2200 nH

^{**} Plate-type tool type

ELP 58/11/38

Core (without clamp recess)

B66293

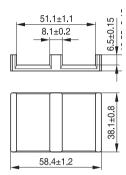
Core set EELP 58

Combination: ELP 58/11/38 with ELP 58/11/38

■ To IEC 62317-9

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.26 \text{ mm}^{-1}$

 $I_e = 80.7 \text{ mm}$ $A_e = 310 \text{ mm}^2$

 $A_{min} = 308 \text{ mm}^2$

 $V_e = 25000 \text{ mm}^3$

Approx. weight 130 g/set

ELP 58/11/38

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N87	7400 ±25%	1540	300	< 15.0 (200 mT, 100 kHz, 100 °C)	B66293G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 58:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	521 -0.732		763	-0.796	705	-0.873	

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: $50 \text{ nH} < A_L < 500 \text{ nH}$

ELP 58/11/38 with I 58/4/38

Core (without clamp recess)

B66293

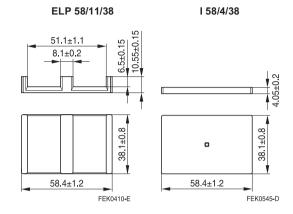
Core set EILP 58 Combination:

ELP 58/11/38 with I 58/4/38

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.22 \text{ mm}^{-1}$


 $I_{e} = 67.7 \text{ mm}$

 $A_0 = 310 \text{ mm}^2$

 $A_{min} = 308 \text{ mm}^2$

 $V_e = 21000 \text{ mm}^3$

Approx. weight 110 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N87	8400 ±25%	1450	300	< 13.0 (200 mT, 100 kHz, 100 °C)	B66293G0000X187 (ELP core) B66293K0000X187 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 58:

Material	Relationship		Calculation o	f saturation cu	ırrent	
	air gap – A _L v	value				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	591 -0.685		791	-0.796	721	-0.873

Validity range: K1, K2: 0.10 mm < s < 1.50 mm

K3, K4: $50 \text{ nH} < A_L < 500 \text{ nH}$

^{**} Plate-type tool type

ELP 64/10/50

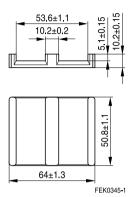
Core (without clamp recess)

B66295

Core set EELP 64

Combination: ELP 64/10/50 with ELP 64/10/50

■ To IEC 62317-9


■ Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.15 mm⁻¹ I_e = 79.9 mm A_e = 519 mm² A_{min} = 518 mm²

 $V_e = 41500 \text{ mm}^3$

Approx. weight 210 g/set

ELP 64/10/50

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	8000 ±30%	980	250	< 10.7 (50 mT, 500 kHz, 100 °C)	B66295G0000X149
N87	12500 ±25%	1490	300	< 26.0 (200 mT, 100 kHz, 100 °C)	B66295G0000X187
N97	12500 ±25%	1531	310	< 19.0 (200 mT, 100 kHz, 100 °C)	B66295G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EELP 64:

Material	Relationship	between	Calculation of saturation current			
	air gap – A _L v	value				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	820 -0.767		1280	-0.796	1182	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

ELP 64/10/50 with I 64/5/50

Core (without clamp recess)

B66295

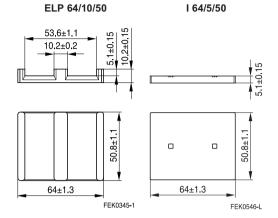
Core set EILP 64 Combination:

ELP 64/10/50 with I 64/5/50

- To IEC 62317-9
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.13 \text{ mm}^{-1}$


 $I_{e} = 69.7 \text{ mm}$

 $A_{\rm p} = 519 \, \rm mm^2$

 $A_{min} = 518 \text{ mm}^2$

 $V_e = 36200 \text{ mm}^3$

Approx. weight 185 g/set

Ungapped

Mate- rial	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code (per piece)
N49	8900 ±30%	950	250	< 9.3 (50 mT, 500 kHz, 100 °C)	B66295G0000X149 (ELP core) B66295K0000X149 (I core)**
N87	14000 ±25%	1450	300	< 23.0 (200 mT, 100 kHz, 100 °C)	B66295G0000X187 (ELP core) B66295K0000X187 (I core)**

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Calculation factors (for formulas, see "E cores: general information", page 402) EILP 64:

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C) K2 (25 °C)		K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N87	835 -0.790		1316	-0.796	1203	-0.873	

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

^{**} Plate-type tool type

ELP 102/20/38

Core (without clamp recess)

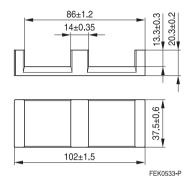
B66297

Core set EELP 102

Combination: ELP 102/20/38 with ELP 102/7/38

■ To IEC 62317-9

■ Delivery mode: single units


Magnetic characteristics (per set)

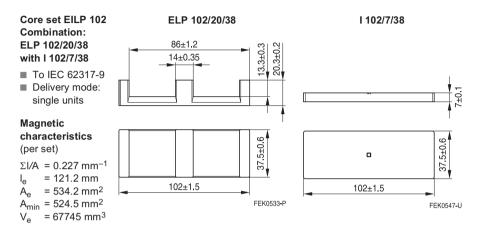
 $\Sigma I/A = 0.274 \text{ mm}^{-1}$ $I_e = 147.6 \text{ mm}$ $A_e = 538 \text{ mm}^2$

 $A_{min} = 524.5 \text{ mm}^2$

 $V_{\rm e} = 79410 \, \rm mm^3$

Approx. weight 405 g/set

ELP 102/20/38


Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N87	8200 ±25%	1790	< 11.0 (100 mT, 100 kHz, 100 °C)	B66297G0000X187
N97	8500 ±25%	1855	< 9.7 (100 mT, 100 kHz, 100 °C)	B66297G0000X197

ELP 102/20/38 with I 102/20/38

Core (without clamp recess)

B66297

Approx. weight 330 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code (per piece)
N87	9300 ±25%	1680	< 8.8 (100 mT, 100 kHz, 100 °C)	B66297G0000X187 (ELP core) B66297K0000X187 (I core)
N97	9600 ±25%	1740	< 8.0 (100 mT, 100 kHz, 100 °C)	B66297G0000X197 (ELP core) B66297K0000X197 (I core)

EQ cores

General information

EQ planar cores for power applications

Integrating ferrite cores into the PCB has become a common technology in the power supply market. In those low-profile designs ferrite planar cores with low losses and high saturation are wide-spread. The trends are increasing the power density of the throughput transformer and the current in the output inductor. Ferrite cores are considered a key component for these targets. EPCOS has extended the range of planar ferrite cores to meet the new requirements.

Besides the standard ELP core series EPCOS offers now extended series of planar cores with round center post: EQ 13 to EQ 30 and ER 9.5 to ER 32. This wide range of shapes improves the design capabilities for individual power converter solutions. Customer-specific heights can be supplied as well as different air gap requirements for all series.

All EPCOS planar cores are available in the well-known EPCOS power materials. Preferred materials are N97 and N92. N97 is optimized for low losses, N92 for high saturation current in the output chokes. N87 is suitable for standard requirements. For frequencies higher than 400 kHz, we recommend N49

EQ 13/3

Core B66479

Core set EEQ 13

Combination: EQ 13/3 with EQ 13/3

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.9 \text{ mm}^{-1}$ $I_e = 17.5 \text{ mm}$ $A_e = 19.8 \text{ mm}^2$

 $A_{min} = 19.2 \text{ mm}^2$ $V_e = 347 \text{ mm}^3$

Approx. weight: 1.8 g/set

12.8±0

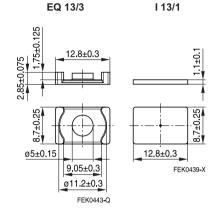
EQ 13/3

FEK0443-Q

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N92	1320 ±25%	940	< 0.28 (200 mT, 100 kHz, 100 °C)	B66479G0000X192
N49	1360 ±25%	1360	< 0.07 (50 mT, 500 kHz, 100 °C)	B66479G0000X149
N87	1640 ±25%	1170	< 0.22 (200 mT, 100 kHz, 100 °C)	B66479G0000X187
N97	1700 ±25%	1196	< 0.18 (200 mT, 100 kHz, 100 °C)	B66479G0000X197

EQ 13/3 with I 13/1

Core B66479


Core set EIQ 13 Combination: EQ 13/3 with I 13/1

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.803 mm⁻¹ I_e = 15.9 mm A_e = 19.8 mm² A_{min} = 19.2 mm² V_e = 315 mm³

Approx. weight: 1.6 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N92	1550 ±25%	990	< 0.25 (200 mT, 100 kHz, 100 °C)	B66479G0000X192 (EQ core) B66479P0000X192 (I core)
N49	1600 ±25%	1020	< 0.06 (50 mT, 500 kHz, 100 °C)	B66479G0000X149 (EQ core) B66479P0000X149 (I core)
N87	1700 ±25%	1100	< 0.20 (200 mT, 100 kHz, 100 °C)	B66479G0000X187 (EQ core) B66479P0000X187 (I core)
N97	1800 ±25%	1150	< 0.16 (200 mT, 100 kHz, 100 °C)	B66479G0000X197 (EQ core) B66479P0000X197 (I core)

EQ 20/6

Core B66483

Core set EEQ 20

Combination: EQ 20/6 with EQ 20/6

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.56 \text{ mm}^{-1}$

 $I_e = 33.2 \text{ mm}$

 $\tilde{A}_{e} = 59.0 \text{ mm}^{2}$

 $A_{min} = 55.0 \text{ mm}^2$

 $V_{e}^{11111} = 1960 \text{ mm}^{3}$

Approx. weight: 11 g/set

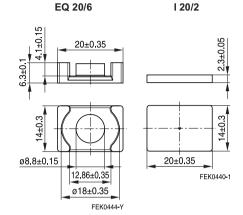
20±0.35 10+1 20±0.35 20±0.35 08.8±0.15 12.86±0.35 018±0.35 FEK0444-Y

EQ 20/6

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N49	2400 ±25%	1070	< 0.51 (50 mT, 500 kHz, 100 °C)	B66483G0000X149
N92	2450 ±25%	1090	< 1.80 (200 mT, 100 kHz, 100 °C)	B66483G0000X192
N87	3100 ±25%	1400	< 1.10 (200 mT, 100 kHz, 100 °C)	B66483G0000X187
N97	3200 ±25%	1430	< 1.00 (200 mT, 100 kHz, 100 °C)	B66483G0000X197

EQ 20/6 with I 20/2

Core B66483


Core set EIQ 20 Combination: EQ 20/6 with I 20/2

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.42 mm⁻¹ I_e = 25.1 mm A_e = 59.8 mm² A_{min} = 55.0 mm² V_e = 1550 mm³

Approx. weight: 8.5 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N92	2950 ±25%	985	< 1.50 (200 mT, 100 kHz, 100 °C)	B66483G0000X192 (EQ core) B66483P0000X192 (I core)
N49	3000 ±25%	1000	< 0.40 (50 mT, 500 kHz, 100 °C)	B66483G0000X149 (EQ core) B66483P0000X149 (I core)
N87	3680 ±25%	1230	< 0.85 (200 mT, 100 kHz, 100 °C)	B66483G0000X187 (EQ core) B66483P0000X187 (I core)
N97	3770 ±25%	1260	< 0.81 (200 mT, 100 kHz, 100 °C)	B66483G0000X197 (EQ core) B66483P0000X197 (I core)

EQ 25/6

Core B66481

Core set EEQ 25

Combination: EQ 25/6 with EQ 25/6

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.352 \text{ mm}^{-1}$

 $I_e = 32.95 \, \text{mm}$

 $A_e = 93.51 \text{ mm}^2$

 $A_{min} = 86.40 \text{ mm}^2$ $V_e = 3082 \text{ mm}^3$

Approx. weight: 16 g/set

EQ 25/6

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N49	3600 ±25%	1010	< 0.80 (50 mT, 500 kHz, 100 °C)	B66481G0000X149
N92	3650 ±25%	1030	< 2.60 (200 mT, 100 kHz, 100 °C)	B66481G0000X192
N87	4700 ±25%	1310	< 1.85 (200 mT, 100 kHz, 100 °C)	B66481G0000X187
N97	4800 ±25%	1350	< 1.54 (200 mT, 100 kHz, 100 °C)	B66481G0000X197

EQ 25/6 with I 25/2

Core B66481


Core set EIQ 25 Combination: EQ 25/6 with I 25/2

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.294 mm⁻¹ I_e = 26.4 mm A_e = 89.7 mm² A_{min} = 82.8 mm² V_e = 2370 mm³

Approx. weight: 13 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N92	4150 ±25%	970	< 2.10 (200 mT, 100 kHz, 100 °C)	B66481G0000X192 (EQ core) B66481P0000X192 (I core)
N49	4200 ±25%	990	< 0.65 (50 mT, 500 kHz, 100 °C)	B66481G0000X149 (EQ core) B66481P0000X149 (I core)
N87	5100 ±25%	1200	< 1.50 (200 mT, 100 kHz, 100 °C)	B66481G0000X187 (EQ core) B66481P0000X187 (I core)
N97	5300 ±25%	1250	< 1.25 (200 mT, 100 kHz, 100 °C)	B66481G0000X197 (EQ core) B66481P0000X197 (I core)

EQ 30/8

Core B66506

Core set EEQ 30

Combination: EQ 30/8 with EQ 30/8

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.426 \text{ mm}^{-1}$

 $I_e = 46 \text{ mm}$

 $A_e = 108 \text{ mm}^2$

 $A_{min} = 95 \text{ mm}^2$

 $V_e = 4970 \text{ mm}^3$

Approx. weight: 23 g/set

30±0.4 911±0.2 19.45±0.4 026±0.4

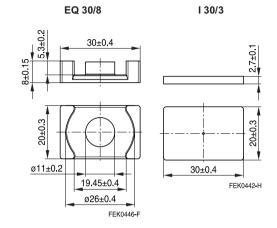
FEK0446-F

EQ 30/8

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N92	3270 ±25%	1110	< 4.25 (200 mT, 100 kHz, 100 °C)	B66506G0000X192
N49	3330 ±25%	1130	< 1.43 (50 mT, 500 kHz, 100 °C)	B66506G0000X149
N87	4300 ±25%	1470	< 2.70 (200 mT, 100 kHz, 100 °C)	B66506G0000X187
N97	4500 ±25%	1540	< 2.50 (200 mT, 100 kHz, 100 °C)	B66506G0000X197

EQ 30/8 with I 30/3

Core B66506

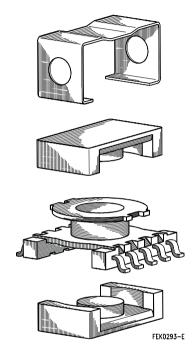

Core set EIQ 30 Combination: EQ 30/8 with I 30/3

- To IEC 62317-9
- Optimized cross section
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.29 mm⁻¹ I_e = 31.5 mm A_e = 108.0 mm² A_{min} = 95.0 mm² V_e = 3400 mm³

Approx. weight: 21.5 g/set


Material	A _L value nH	μ _e	P _V W/set	Ordering code
N49	4350 ±25%	1000	< 1.10 (50 mT, 500 kHz, 100 °C)	B66506G0000X149 (EQ core) B66506P0000X149 (I core)
N92	4450 ±25%	1020	< 3.40 (200 mT, 100 kHz, 100 °C)	B66506G0000X192 (EQ core) B66506P0000X192 (I core)
N87	5600 ±25%	1300	< 2.15 (200 mT, 100 kHz, 100 °C)	B66506G0000X187 (EQ core) B66506P0000X187 (I core)
N97	5750 ±25%	1330	< 2.00 (200 mT, 100 kHz, 100 °C)	B66506G0000X197 (EQ core) B66506P0000X197 (I core)

ER planar cores

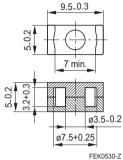
General information

Example of an assembly set ER 11/5

ER 9.5/5

Planar core B65523

■ To IEC 62317-9


■ For transformers featuring high inductance and low overall height

■ Delivery mode: sets

Magnetic characteristics (per set)

 $\Sigma I/A = 1.54 \text{ mm}^{-1}$ = 13.6 mm $= 8.81 \text{ mm}^2$ $= 120 \text{ mm}^3$

Approx. weight 0.6 g/set

Material	A _L value nH	μ _e	Ordering code
N87	800 +30/–20%	1000	B65523J0000R087
N92	660 +30/–20%	811	B65523J0000R092
N97	840 +30/–20%	1032	B65523J0000R097
T38	4500 +40/–30%	5680	B65523J0000Y038

ER 9.5/5

Accessories B65527

SMD coil former with gullwing terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

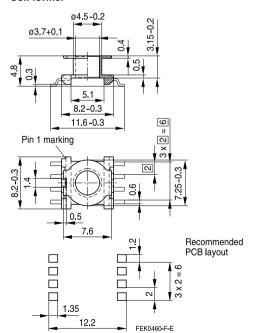
F \triangleq max. operating temperature 155 °C), color code black Vectra E 130i [E106764 (M)], POLYPLASTICS CO LTD

Vectra E 130i [E83005 (M)], TICONA

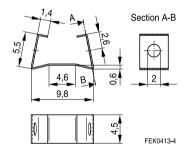
Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s


Winding: see "Processing notes", page 179

Yoke


Material: Stainless spring steel (0.1 mm)

Coil former	•	Ordering code			
Sections	A _N mm ²				
1	3.23	18.4	196	8	B65527B1008T001
Yoke	•	•	*		B65527A2000X000

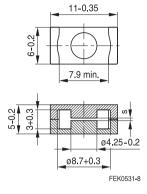
Coil former

Yoke

ER 11/5

Planar core B65525

■ To IEC 62317-9


■ For transformers featuring high inductance and low overall height

■ Delivery mode: sets

Magnetic characteristics (per set)

 Σ I/A = 1.1 mm⁻¹ I_e = 14.1 mm A_e = 12.4 mm² V_e = 174 mm³

Approx. weight 0.85 g/set

Ungapped

Material	A _L value nH	μ_{e}	Ordering code
N49	800 +30/–20%	715	B65525J0000R049
N87	1200 +30/–20%	1050	B65525J0000R087
N92	900 +30/–20%	814	B65525J0000R092
N97	1200 +30/–20%	1086	B65525J0000R097
T38	6400 +40/-30%	5600	B65525J0000Y038

Gapped

Material	A _L value	s	μ _e	Ordering code
		approx.		
	nH	mm		
N87	160 ±3%	0.08	140	B65525J0160A087

ER 11/5

Accessories B65526

SMD coil former with gullwing terminals

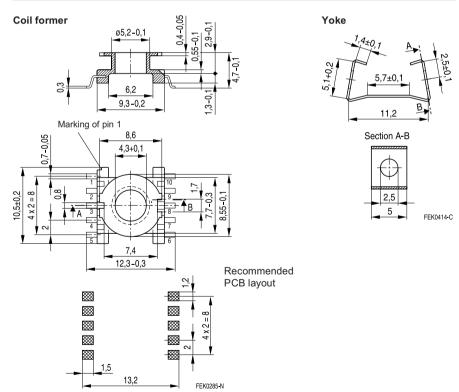
Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Zenite 7130® [E344082 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s


Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1s

Winding: see "Processing notes", page 179

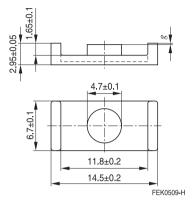
Yoke Material: Stainless spring steel (0.15 mm)

Coil former	r	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	
1	3.3	21.6	225	10	B65526B1010T001
Yoke		B65526A2000X000			

ER 14.5/6

Planar core B65513

■ To IEC 62317-9


■ For transformers featuring high inductance and low overall height

■ Delivery mode: sets

Magnetic characteristics (per set)

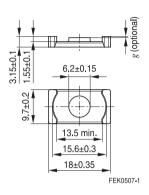
 Σ I/A = 1.1 mm⁻¹ I_e = 19 mm A_e = 17.6 mm² V_e = 333 mm³

Approx. weight 1.8 g/set

Material	A _L value nH	μ_{e}	Ordering code
N49	1100 +30/–20%	800	B65513J0000R049
N92	1100 +30/–20%	970	B65513J0000R092
N87	1500 +30/–20%	1250	B65513J0000R087
N97	1500 +30/–20%	1290	B65513J0000R097

ER 18/3/10

Planar core B66480


- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.732 \text{ mm}^{-1}$ $I_e = 22.1 \text{ mm}$ $A_e = 30.2 \text{ mm}^2$

 $A_{min} = 30.1 \text{ mm}^2$ $V_e = 667 \text{ mm}^3$

Approx. weight: 3.5 g/set

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N49	1800 ±25%	1050	< 0.10 (50 mT, 500 kHz, 100 °C)	B66480G0000X149
N92	1800 ±25%	1050	< 0.39 (200 mT, 100 kHz, 100 °C)	B66480G0000X192
N87	2300 ±25%	1340	< 0.35 (200 mT, 100 kHz, 100 °C)	B66480G0000X187
N97	2300 ±25%	1340	< 0.30 (200 mT, 100 kHz, 100 °C)	B66480G0000X197

ER 23/5/13

Planar core B66482

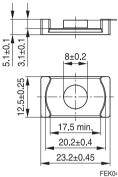
Core set EER 23 Combination: ER 23/5/13 with ER 23/5/13

■ To IEC 62317-9

Optimized winding area

■ Small overall footprint (core and winding)

■ Less EMI


■ Minimized winding length ■ Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.648 \text{ mm}^{-1}$ = 32.6 mm $= 50.3 \text{ mm}^2$ $A_{min} = 50.0 \text{ mm}^2$ $V_{\rm e} = 1640 \, \rm mm^3$

Approx. weight: 7.8 g/set

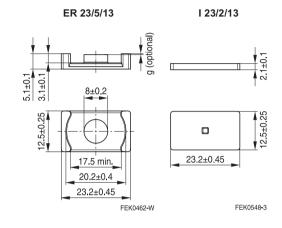
ER 23/5/13

Material	A _L value	μ _e	B _S *	P_V	Ordering code
	nH		mT	W/set	
N49	2200 ±25%	1140	250	< 0.25 (50 mT, 500 kHz, 100 °C)	B66482G0000X149
N92	2200 ±25%	1140	350	< 0.95 (200 mT, 100 kHz, 100 °C)	B66482G0000X192
N87	3000 ±25%	1550	300	< 0.86 (200 mT, 100 kHz, 100 °C)	B66482G0000X187
N97	3000 ±25%	1550	310	< 0.69 (200 mT, 100 kHz, 100 °C)	B66482G0000X197
N95	3700 ±25%	1835	310	< 1.05 (200 mT, 100 kHz, 25 °C)	B66482G0000X195
				< 0.86 (200 mT, 100 kHz, 100 °C)	

^{*} H = 250 A/m: f = 10 kHz: T = 100 °C

ER 23/5/13 with I 23/2/13

Planar core B66482


Core set EIR 23 Combination: ER 23/5/13 with I 23/2/13

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.53 mm⁻¹ I_e = 26.6 mm A_e = 50.3 mm² A_{min} = 50.0 mm² V_e = 1335 mm³

Approx. weight: 6.4 g/set

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N49	2600 ±25%	1100	< 0.21 (50 mT, 500 kHz, 100 °C)	B66482G0000X149 (ER core) B66482K0000X149 (I core)
N92	2600 ±25%	1100	< 0.77 (200 mT, 100 kHz, 100 °C)	B66482G0000X192 (ER core) B66482K0000X192 (I core)
N87	3400 ±25%	1430	< 0.70 (200 mT, 100 kHz, 100 °C)	B66482G0000X187 (ER core) B66482K0000X187 (I core)
N97	3400 ±25%	1430	< 0.56 (200 mT, 100 kHz, 100 °C)	B66482G0000X197 (ER core) B66482K0000X197 (I core)

ER 25/6/15

Planar core B66484

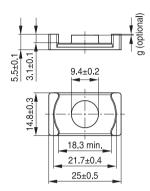
Core set EER 25 Combination: ER 25/6/15 with ER 25/6/15

■ To IEC 62317-9

- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.482 \text{ mm}^{-1}$


 $I_e = 34.1 \text{ mm}$

 $A_e = 70.8 \text{ mm}^2$

 $A_{min} = 69.4 \text{ mm}^2$ $V_e = 2414 \text{ mm}^3$

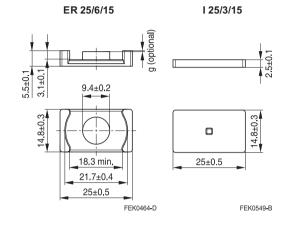
Approx. weight: 14.2 g/set

ER 25/6/15

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N49	3000 ±25%	1150	< 0.34 (50 mT, 500 kHz, 100 °C)	B66484G0000X149
N92	3000 ±25%	1150	< 1.40 (200 mT, 100 kHz, 100 °C)	B66484G0000X192
N87	4100 ±25%	1570	< 1.27 (200 mT, 100 kHz, 100 °C)	B66484G0000X187
N97	4100 ±25%	1570	< 1.01 (200 mT, 100 kHz, 100 °C)	B66484G0000X197

ER 25/6/15 with I 25/3/15

Planar core B66484


Core set EIR 25 Combination: ER 25/6/15 with I 25/3/15

- To IEC 62317-9
- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.399 mm⁻¹ I_e = 28.1 mm A_e = 70.4 mm² A_{min} = 69.4 mm² V_e = 1978 mm³

Approx. weight: 11.5 g/set

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N49	3400 ±25%	1080	< 0.30 (50 mT, 500 kHz, 100 °C)	B66484G0000X149 (ER core) B66484K0000X149 (I core)
N92	3400 ±25%	1080	< 1.14 (200 mT, 100 kHz, 100 °C)	B66484G0000X192 (ER core) B66484K0000X192 (I core)
N87	4600 ±25%	1460	< 1.04 (200 mT, 100 kHz, 100 °C)	B66484G0000X187 (ER core) B66484K0000X187 (I core)
N97	4600 ±25%	1460	< 0.83 (200 mT, 100 kHz, 100 °C)	B66484G0000X197 (ER core) B66484K0000X197 (I core)

ER 32/5/21

Planar core B66501

■ To IEC 62317-9

- Optimized winding area
- Small overall footprint (core and winding)
- Less EMI
- Minimized winding length
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.381 \text{ mm}^{-1}$

= 38.3 mm

 $\bar{A}_{e} = 100.5 \, \text{mm}^2$

 $A_{min}^{c} = 98.5 \text{ mm}^{2}$ $V_{e}^{c} = 3847 \text{ mm}^{3}$

Approx. weight: 23.3 g/set

FEK0468-B

Material	A _L value	μ _e	B _S *	P_V	Ordering code
	nĤ	_	mT	W/set	
N49	3800 ±25%	1050		< 0.59 (50 mT, 500 kHz, 100 °C)	B66501G0000X149
N92	3800 ±25%	1050	350	< 2.40 (200 mT, 100 kHz, 100 °C)	B66501G0000X192
N87	4900 ±25%	1350	300	< 2.40 (200 mT, 100 kHz, 100 °C)	B66501G0000X187
N97	5000 ±25%	1380	320	< 2.20 (200 mT, 100 kHz, 100 °C)	B66501G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

ER cores

General information

Example of an assembly set ER 42

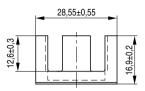
ER cores are the ideal answer when compact winding structures with low leakage inductance are needed. The round center leg is an advantage together with thick wires or bands.

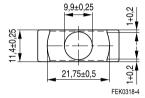
Because of their good thermal response, ER cores are especially suitable for applications with high power density. E.g. they are used in flyback converters for TVs and monitors.

ER 28/17/11

Core B66433

- To IEC 62317-7
- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units


Magnetic characteristics (per set)


 $\Sigma I/A = 0.88 \text{ mm}^{-1}$ $I_e = 75.0 \text{ mm}$ $A_e = 85.4 \text{ mm}^2$

 $A_{min} = 77.0 \text{ mm}^2$

 $V_e = 6400 \text{ mm}^3$

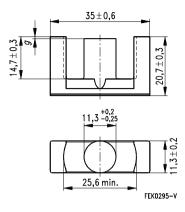
Approx. weight 32 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N72	2700 +30/–20%	1890	< 0.80 (200 mT, 25 kHz, 100 °C)	B66433G0000X172

ER 35/20/11

Core B66350

- To IEC 62317-7
- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 0.81 \text{ mm}^{-1}$ $I_e = 89.6 \text{ mm}$

 $A_{\rm e} = 111 \, \rm mm^2$

 $A_{min} = 101 \text{ mm}^2$ $V_{R} = 9950 \text{ mm}^3$

Approx. weight 52 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	2500 +30/–20%	1610	< 1.95 (200 mT, 25 kHz, 100 °C)	B66350G0000X127
N87	2700 +30/–20%	1735	< 5.20 (200 mT, 100 kHz, 100 °C)	B66350G0000X187

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code	
N27	0.50 ±0.05	275	177	B66350G0500X127	
	1.00 ±0.05	170	109	B66350G1000X127	
	1.50 ±0.05	125	80	B66350G1500X127	

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship air gap – A _L		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	169	-0.706	275	-0.847	256	-0.865	

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 90 nH < A_L < 600 nH

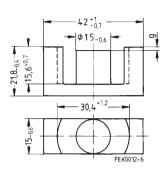
ER 42/22/15

Core B66347

 Round center leg particularly suitable for use of thick winding wires or tapes

- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.58 \text{ mm}^{-1}$

 $I_e = 99 \text{ mm}$

 \bar{A}_{e} = 170 mm² A_{min} = 170 mm²

 $V_e = 16800 \text{ mm}^3$

Approx. weight 84 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	3200 +30/–20%	1480	320	< 3.1 (200 mT, 25 kHz, 100 °C)	B66347G0000X127
N87	3700 +30/–20%	1710	320	< 9.0 (200 mT, 100 kHz, 100 °C)	B66347G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	1.00 ±0.05	257	119	B66347G1000X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	257	-0.741	415	-0.847	387	-0.865
N87	257	-0.741	401	-0.796	377	-0.873

 $Validity\ range: \qquad K1,\ K2:\ 0.10\ mm < s < 3.00\ mm$

K3, K4: 110 nH < A_L < 1100 nH

ER 42/22/15

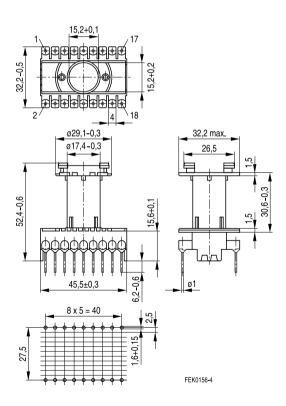
Accessories B66348

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black


Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 177

Coil former	Ordering code				
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	222	70.8	18.6	18	B66348A1018T001

ER 46/17/18

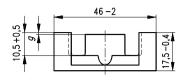
Core B66377

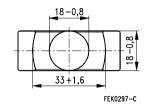
■ Round center leg particularly suitable for use of thick winding wires or tapes

- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.34 \text{ mm}^{-1}$


 $I_e = 79 \text{ mm}$


 $A_e = 233 \text{ mm}^2$

 $A_{min} = 226 \text{ mm}^2$

 $V_e = 18400 \text{ mm}^3$

Approx. weight 98 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	5700 +30/–20%	1550	< 3.62 (200 mT, 25 kHz, 100 °C)	B66377G0000X127

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	1.00 ±0.05	343	93	B66377G1000X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	343	-0.826	589	-0.847	546	-0.865	

Validity range: K1, K2: 0.10 mm < s < 1.00 mm

K3, K4: 190 nH < A_L < 1850 nH

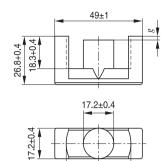
ER 49/27/17

Core B66391

- To IEC 62317-7
- Round center leg particularly suitable for use of thick winding wires or tapes
- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.49 \text{ mm}^{-1}$


l_e = 118 mm

 $\bar{A}_{e} = 243 \text{ mm}^2$

 $A_{min} = 225 \text{ mm}^2$

 $V_e = 28700 \text{ mm}^3$

Approx. weight 146 g/set

37.3±0.9

FEK0508-9

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	3500 +30/–20%	1350	< 5.38 (200 mT, 25 kHz, 100 °C)	B66391G0000X127

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current				
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)	
N27	342	-0.750	578	-0.847	540	-0.865	

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 130 nH < A_I < 1300 nH

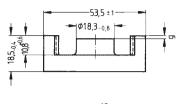
ER 54/18/18

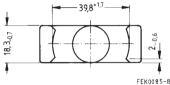
Core B66357

 Round center leg particularly suitable for use of thick winding wires or tapes

- For compact winding design with low leakage inductance
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.35 \text{ mm}^{-1}$


l_e = 90 mm

 $A_e = 256 \text{ mm}^2$ $A_{min} = 252 \text{ mm}^2$

 $V_e = 23000 \text{ mm}^3$

Approx. weight 119 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	5600 +30/–20%	1560	320	< 4.4 (200 mT, 25 kHz, 100 °C)	B66357G0000X127
N87	5800 +30/–20%	1620	320	< 12.5 (200 mT, 100 kHz, 100 °C)	B66357G0000X187

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

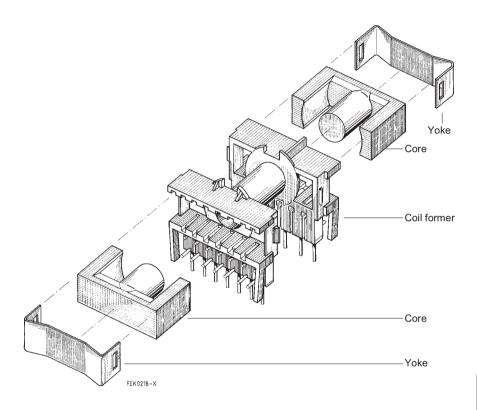
Material	g mm	A _L value approx. nH	μ_{e}	Ordering code
N27	0.50 ±0.05	620	173	B66357G0500X127

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	360	-0.786	635	-0.847	590	-0.865
N87	360	-0.786	616	-0.796	574	-0.873

Validity range: K1, K2: 0.15 mm < s < 3.50 mm

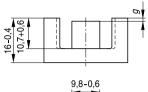

K3, K4: 180 nH < A_L < 1800 nH

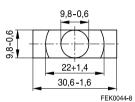
ETD cores

General information

Example of an assembly set (ETD 34)

ETD 29/16/10


Core B66358


- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.93 mm⁻¹ I_e = 70.4 mm A_e = 76.0 mm² A_{min} = 71.0 mm² V_e = 5350 mm³

Approx. weight 28 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N27	2000 +30/–20%	1470	< 1.04 (200 mT, 25 kHz, 100 °C)	B66358G0000X127
N87	2200 +30/–20%	1610	< 2.80 (200 mT, 100 kHz, 100 °C)	B66358G0000X187
N97	2250 +30/–20%	1670	< 2.40 (200 mT, 100 kHz, 100 °C)	B66358G0000X197

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.10 ±0.02	621	457	B66358G0100X1**
N87	0.20 ±0.02	383	281	B66358G0200X1**
	0.50 ±0.05	201	148	B66358G0500X1**
	1.00 ±0.05	124	91	B66358G1000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	124	-0.7	195	-0.847	181	-0.865
N87	124	-0.7	192	-0.796	176	-0.873

 $Validity\ range: \qquad K1,\ K2:\ 0.10\ mm < s < 2.00\ mm$

K3, K4: $70 \text{ nH} < A_L < 680 \text{ nH}$

ETD 29/16/10

Accessories B66359

Coil former (magnetic axis horizontal)

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

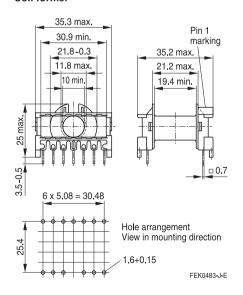
B66359W: H

max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

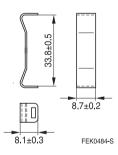
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 177


Squared pins.

Yoke


Material: Stainless spring steel (0.3 mm)

Coil former	•	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	97	52.8	18.7	13	B66359B1013T001 B66359W1013T001
Yoke (orde	ring code pe	B66359S2000X000			

Coil former

Yoke

ETD 29/16/10

Accessories B66359

Coil former (magnetic axis vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 177

Squared pins.

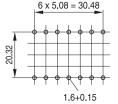
Yoke

Material: Stainless spring steel (0.3 mm)

Coil former	r	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	97	52.8	18.7	14	B66359X1014T001
Yoke (orde	ring code pe	B66359A2000X000			

Coil former

30.9 min. 21.8-0.3 10 min. 13 10+0.2 35.2 max.


ø11.8 max. 21.2 max. 39.75 max

□ 0.7

Pin 1 marking

Hole arrangement View in mounting direction

FEK0485-1-E

Yoke

33.8±0.5

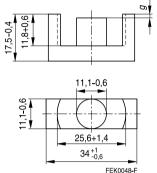
8.7±0.2

FEK0486-9

8.1±0.3

04/13

ETD 34/17/11


Core B66361

- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 Σ I/A = 0.81 mm⁻¹ I_e = 78.6 mm A_e = 97.1 mm² A_{min} = 91.6 mm² V_e = 7630 mm³

Approx. weight 40 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N27	2400 +30/–20%	1540	< 1.48 (200 mT, 25 kHz, 100 °C)	B66361G0000X127
N87	2600 +30/–20%	1670	< 4.00 (200 mT, 100 kHz, 100 °C)	B66361G0000X187
N97	2650 +30/–20%	1710	< 3.40 (200 mT, 100 kHz, 100 °C)	B66361G0000X197

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27, N87	0.10 ±0.02 0.20 ±0.02 0.50 +0.05	790 482 251	508 310 161	B66361G0100X1** B66361G0200X1** B66361G0500X1**
	1.00 ±0.05	153	98	B66361G1000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

ETD 34/17/11 Core B66361

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	153	-0.713	245	-0.847	227	-0.865
N87	153	-0.713	240	-0.796	222	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.50 mm

K3, K4: 80 nH < A_L < 780 nH

ETD 34/17/11

Accessories B66362

Coil former (magnetic axis horizontal)

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

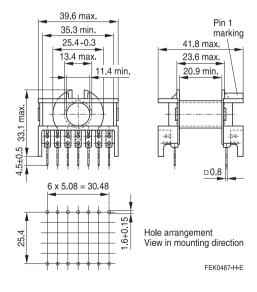
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

B66362W: H

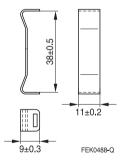
max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 177

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former	•	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	122	60.5	17	14	B66362B1014T001 B66362W1014T001
Yoke (orde	ring code pe	B66362A2000X000			

Coil former

Yoke

ETD 34/17/11

Accessories B66362

Coil former (magnetic axis vertical)

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

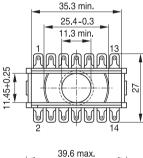
H

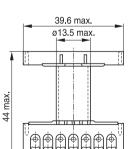
max. operating temperature 180 °C), color code black

Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

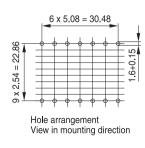
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

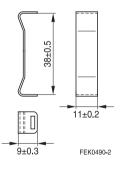

Winding: see "Processing notes", page 177


Yoke

Material: Stainless spring steel (0.4 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	122	60.5	17	14	B66362X1014T001
Yoke (orderi	ng code per pie	B66362A2000X000			


Coil former



5.5-0.4

Pin 1 marking 1-0.1 1,5 □ 0.8 23.4 max.

Yoke

Please read Important notes on page 2 and Cautions and warnings on page 609. FEK0510-K-E

04/13

ETD 39/20/13

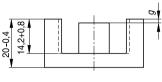
B66363 Core

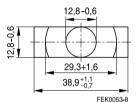
- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.74 \text{ mm}^{-1}$

= 92.2 mm


= 125 mm²


 $A_{\min}^{-} = 123 \text{ mm}^{2}$

 $V_{\rm p} = 11500 \, \rm mm^3$

Approx. weight 60 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	2550 +30/–20%	1500	320	< 2.22 (200 mT, 25 kHz, 100 °C)	B66363G0000X127
N87	2700 +30/–20%	1600	320	< 6.00 (200 mT, 100 kHz, 100 °C)	B66363G0000X187
N97	2800 +30/-20%	1650	320	< 5.10 (200 mT, 100 kHz, 100 °C)	B66363G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g	A _L value approx.	μ _e	Ordering code ** = 27 (N27)
	mm	nH		= 87 (N87)
N27,	0.10 ±0.02	1062	622	B66363G0100X1**
N87	0.20 ±0.02	639	374	B66363G0200X1**
	0.50 ±0.05	326	191	B66363G0500X1**
	1.00 ±0.05	196	115	B66363G1000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	196	-0.734	308	-0.847	287	-0.865
N87	196 -0.734		300	-0.796	280	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.00 mm K3, K4: $90 \text{ nH} < A_1 < 850 \text{ nH}$

ETD 39/20/13

Accessories B66364

Coil former

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

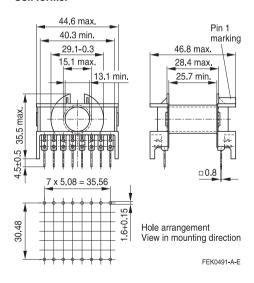
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

B66364W: H

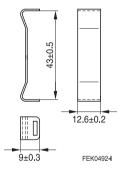
max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 177

Yoke


Material: Stainless spring steel (0.4 mm)

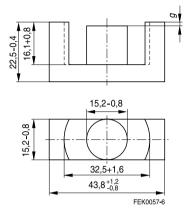
Coil former	•	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	178	69	13.3	16	B66364B1016T001 B66364W1016T001
Yoke (orde	ring code pe	B66364A2000X000			

Coil former

Yoke

ETD 44/22/15

Core B66365


- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.6 \text{ mm}^{-1}$ $I_e = 103 \text{ mm}$ $A_e = 173 \text{ mm}^2$ $A_{min} = 172 \text{ mm}^2$

 $V_e = 17800 \text{ mm}^3$

Approx. weight 94 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	3300 +30/–20%	1560	320	< 3.48 (200 mT, 25 kHz, 100 °C)	B66365G0000X127
N87	3500 +30/–20%	1650	320	< 9.40 (200 mT, 100 kHz, 100 °C)	B66365G0000X187
N97	3600 +30/–20%	1720	320	< 8.00 (200 mT, 100 kHz, 100 °C)	B66365G0000X197
N95	4400 +30/-20%	2085	330	< 8.85 (200 mT, 100 kHz, 100 °C)	B66365G0000X195

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.20 ±0.02	862	407	B66365G0200X1**
N87	0.50 ±0.05	438	207	B66365G0500X1**
	1.00 ±0.05	262	124	B66365G1000X1**
	1.50 ±0.05	194	92	B66365G1500X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

ETD 44/22/15 Core B66365

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	262	-0.74	420	-0.847	391	-0.865
N87	262	-0.74	420	-0.796	382	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 110 nH < A_L < 1060 nH

ETD 44/22/15

Accessories B66366

Coil former

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

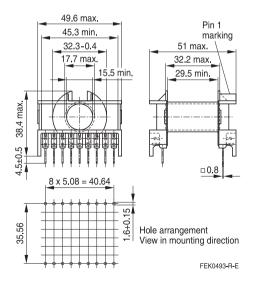
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

B66366W: H

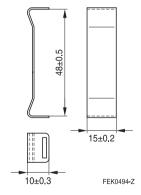
max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 177

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former	r	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	210	77.7	12.7	18	B66366B1018T001 B66366W1018T001
Yoke (orde	ring code pe	B66366A2000X000			

Coil former

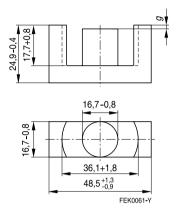
Yoke

ETD 49/25/16

Core B66367

- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.54 \text{ mm}^{-1}$

I_e = 114 mm

 $A_e = 211 \text{ mm}^2$

 $A_{min} = 209 \text{ mm}^2$ $V_e = 24100 \text{ mm}^3$

Approx. weight 124 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	3700 +30/–20%	1590	320	< 4.59 (200 mT, 25 kHz, 100 °C)	B66367G0000X127
N87	3800 +30/–20%	1630	320	< 12.40 (200 mT, 100 kHz, 100 °C)	B66367G0000X187
N97	3900 +30/–20%	1680	320	< 10.60 (200 mT, 100 kHz, 100 °C)	B66367G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.20 ± 0.02	1035	444	B66367G0200X1**
N87	0.50 ±0.05	525	225	B66367G0500X1**
	1.00 ±0.05	314	135	B66367G1000X1**
	2.00 ±0.05	188	81	B66367G2000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

ETD 49/25/16 Core B66367

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	314	-0.741	504	-0.847	470	-0.865
N87	314	-0.741	485	-0.796	460	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 120 nH < A_L < 1160 nH

ETD 49/25/16

Accessories B66368

Coil former

Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

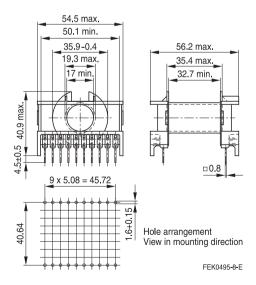
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

B66368W: H

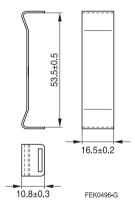
max. operating temperature 180 °C, color code black Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 177

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former	•	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	269.4	86	11	20	B66368B1020T001 B66368W1020T001
Yoke (orde	ring code pe	B66368A2000X000			

Coil former

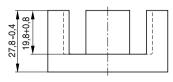
Yoke

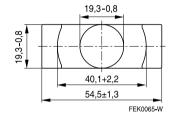
ETD 54/28/19

Core B66395

- To IEC 61185
- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.45 \text{ mm}^{-1}$


 $I_e = 127 \text{ mm}$

 $A_e = 280 \text{ mm}^2$

 $A_{min} = 280 \text{ mm}^2$ $V_e = 35600 \text{ mm}^3$

Approx. weight 180 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	4200 +30/–20%	1510	320	< 6.66 (200 mT, 25 kHz, 100 °C)	B66395G0000X127
N87	4450 +30/–20%	1600	320	< 3.20 (100 mT, 100 kHz, 100 °C)	B66395G0000X187
N97	4600 +30/–20%	1650	320	< 2.60 (100 mT, 100 kHz, 100 °C)	B66395G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ_{e}	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.20 ±0.02	1377	496	B66395G0200X1**
N87	1.00 ±0.05	393	141	B66395G1000X1**
	1.50 ±0.05	287	103	B66395G1500X1**
	2.00 ±0.05	229	82	B66395G2000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

ETD 54/28/19 Core B66395

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	393	-0.779	658	-0.847	615	-0.865
N87	393	-0.779	630	-0.796	603	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 140 nH < A_L < 1390 nH

ETD 54/28/19

Accessories B66396

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

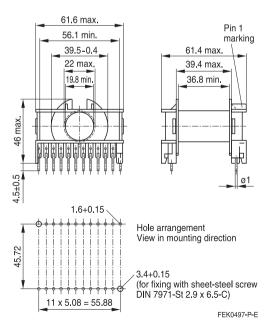
H

max. operating temperature 180 °C), color code black

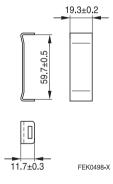
Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see "Processing notes", page 177

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	315.6	96	10.5	22	B66396W1022T001
Yoke (order	ing code per pie	B66396A2000X000			

Coil former

Yoke

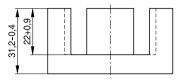
ETD 59/31/22

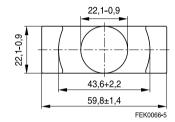
Core B66397

■ To IEC 61185

- For SMPS transformers with optimum weight/performance ratio at small volume
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.38 \text{ mm}^{-1}$


 $I_e = 139 \text{ mm}$ $A_o = 368 \text{ mm}^2$

 $A_{min} = 368 \text{ mm}^2$

 $V_e = 51200 \text{ mm}^3$

Approx. weight 260 g/set

Ungapped

Material	A _L value nH	μ _e	B _S * mT	P _V W/set	Ordering code
N27	5000 +30/–20%	1500	320	< 9.62 (200 mT, 25 kHz, 100 °C)	B66397G0000X127
N87	5300 +30/–20%	1590	320	< 5.20 (100 mT, 100 kHz, 100 °C)	B66397G0000X187
N97	5500 +30/–20%	1660	320	< 4.50 (100 mT, 100 kHz, 100 °C)	B66397G0000X197

^{*} H = 250 A/m; f = 10 kHz; T = 100 °C

Gapped

Material	g mm	A _L value approx. nH	μ _e	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.20 ±0.02	1588	476	B66397G0200X1**
N87	1.00 ±0.05	508	152	B66397G1000X1**
	1.50 ±0.05	381	114	B66397G1500X1**
	2.00 ±0.05	311	93	B66397G2000X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

ETD 59/31/22 Core B66397

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	508	-0.708	853	-0.847	799	-0.865
N87	508	-0.708	812	-0.796	783	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 170 nH < A_L < 1660 nH

ETD 59/31/22

Accessories B66398

Coil former

Material: GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:

H

max. operating temperature 180 °C), color code black

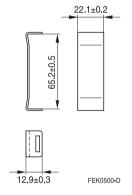
Rynite FR 530® [E41938 (M)], E I DUPONT DE NEMOURS & CO INC

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 177

Yoke

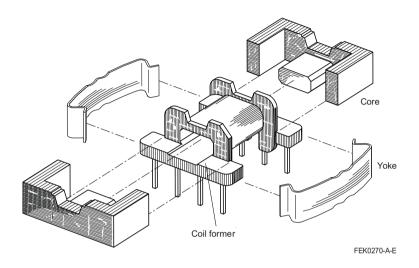

Material: Stainless spring steel (0.4 mm)

Coil former	r	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	365.6	106.1	10.0	24	B66398W1024T001
Yoke (orde	ring code pe	B66398A2000X000			

Coil former

66.9 max. Pin 1 61.5 min. marking 43-0.4 66.2 max. 24.9 max. 43.7 max. 22.4 min. 41.2 min. 49.2 max. 4.5 ± 0.5 ø1 1.6+0.15 Hole arrangement View in mounting direction 50.8 3.4+0.15 (for fixing with sheet-steel screw DIN 7971-St 2.9 x 6.5-C) 12 x 5.08 = 60.96 FEK0499-6-E

Yoke



EFD cores

General information

Example of an assembly set

EFD 10/5/3

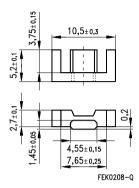
Core B66411

■ E core with flattened, lower center leg for especially flat transformer design

- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 3.21 \text{ mm}^{-1}$


 $I_e = 23.1 \text{ mm}$

 $A_e = 7.2 \text{ mm}^2$

 $A_{min} = 6.5 \text{ mm}^2$

 $V_e = 166 \text{ mm}^3$

Approx. weight 0.8 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N49	370 +30/–20%	940	< 0.032 (50 mT, 500 kHz, 100 °C)	B66411G0000X149
N87	450 +30/–20%	1150	< 0.090 (200 mT, 100 kHz, 100 °C)	B66411G0000X187
N97	470 +30/–20%	1200	< 0.080 (200 mT, 100 kHz, 100 °C)	B66411G0000X197

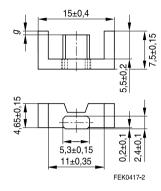
EFD 15/8/5

Core B66413

■ E core with flattened, lower center leg for especially flat transformer design

- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 2.27 \text{ mm}^{-1}$

 $I_0 = 34 \text{ mm}$

 $A_{\rm e} = 15 \, {\rm mm}^2$

 $A_{min} = 12.2 \text{ mm}^2$ $V_{e} = 510 \text{ mm}^3$

Approx. weight 2.8 g/set

Ungapped

Material	A _L value nH	μ_{e}	P _V W/set	Ordering code
N49	600 +30/–20%	1080	< 0.11 (50 mT, 500 kHz, 100 °C)	B66413G0000X149
N87	780 +30/–20%	1400	< 0.28 (200 mT, 100 kHz, 100 °C)	B66413G0000X187
N97	820 +30/–20%	1480	< 0.23 (200 mT, 100 kHz, 100 °C)	B66413G0000X197

Gapped

Material	A _L value nH	μ_{e}	g approx. mm	Ordering code
N87	100 ±10%	180	0.17	B66413U0100K187
	160 ±15%	288	0.08	B66413U0160L187

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Material Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	29.7	-0.676	44.2	-0.796	33.2	-0.873

Validity range: K1, K2: 0.10 mm < s < 1.00 mm

K3, K4: $30 \text{ nH} < A_L < 280 \text{ nH}$

EFD 15/8/5

Accessories B66414

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

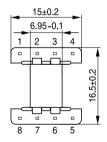
max.operating temperature 180 °C), color code black

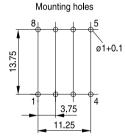
Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

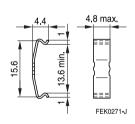
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 176

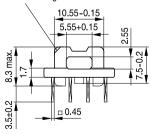

Squared pins.

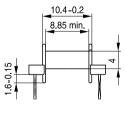

Yoke


Material: Stainless spring steel (0.25 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	15.5	B66414W1008D001			
Yoke (order	ing code per pie	B66414B2000X000			

Coil former





Yoke

Pin 1 marking

FEK0418-A-E

EFD 15/8/5

Accessories B66414

SMD

SMD coil former with J terminals

Material: GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:

F

max. operating temperature 155 °C), color code black

Vectra C 130 [E83005 (M)], TICONA

Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 °C, 3 s

Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 °C, 10 s

permissible soldering temperature for wire-wrap connection on coil former: 400 °C, 1 s

Winding: see "Processing notes", page 179

Yoke

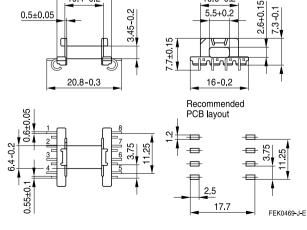
Material: Stainless spring steel (0.25 mm)

Mounting: Preferred assembly direction from the top

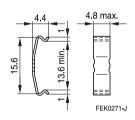
Cover plate

For marking and improved processing on assembly machines.

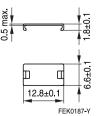
See under coil former for material and resistance to soldering heat.


Material: Sumika Super E4008® [E54705 (M)], SUMITOMO CHEMICAL CO LTD

Coil former	•	Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Terminals	
1	18.1	35.1	66.7	8	B66414B6008T001
Yoke (orde	ring code per	B66414B2000X000			
Cover plate					B66414A7000X000


10.6-0.2

Coil former


15-0.25 10.4-0.2

Yoke

Cover plate

EFD 20/10/7

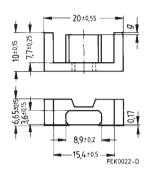
Core B66417

■ E core with flattened, lower center leg for especially flat transformer design

- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 1.52 \text{ mm}^{-1}$


 $I_0 = 47 \text{ mm}$

 $A_{e} = 31 \text{ mm}^{2}$

 $A_{\min} = 31 \text{ mm}^2$

 $V_e = 1460 \text{ mm}^3$

Approx. weight 7.2 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N49	910 +30/–20%	1100	< 0.29 (50 mT, 500 kHz, 100 °C)	B66417G0000X149
N87	1200 +30/–20%	1440	< 1.05 (200 mT, 100 kHz, 100 °C)	B66417G0000X187
N97	1250 +30/–20%	1510	< 0.80 (200 mT, 100 kHz, 100 °C)	B66417G0000X197

Gapped

Material	A _L value nH	μ _e	g approx. mm	Ordering code
N87	100 ±10%	120	0.49	B66417U0100K187
	160 ±10%	193	0.25	B66417U0160K187

The A_L value in the table applies to a core set comprising one ungapped core (dimension g=0) and one gapped core (dimension g>0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	61.1	-0.699	85.4	-0.796	75.7	-0.873

Validity range: K1, K2: 0.10 mm < s < 1.40 mm

K3, K4: $50 \text{ nH} < A_L < 410 \text{ nH}$

EFD 20/10/7

Accessories B66418

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H ≙ max. operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

Winding: see "Processing notes", page 176

Squared pins.

Yoke

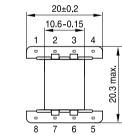
10 4 max

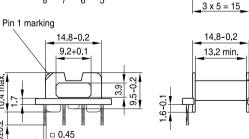
 3.5 ± 0.2

Material: Stainless spring steel (0.3 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1 28.1 40.2 49.2 8					B66418W1008D001
Yoke (order	ring code per p	B66418B2000X000			

Mounting holes

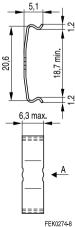

5


ø1.3+0.1

5.3

FEK0210-2-E

Coil former



17.5

View A

Yoke

EFD 25/13/9

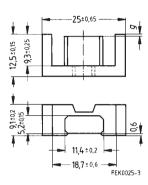
Core B66421

■ E core with flattened, lower center leg for especially flat transformer design

- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.98 \text{ mm}^{-1}$


 $I_0 = 57 \text{ mm}$

 $A_0 = 58 \text{ mm}^2$

 $A_{\min} = 57 \text{ mm}^2$

 $V_{e}^{1} = 3310 \text{ mm}^{3}$

Approx. weight 16.6 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N87	2000 +30/–20%	1560	< 1.8 (200 mT, 100 kHz, 100 °C)	B66421G0000X187
N97	2100 +30/–20%	1640	< 1.5 (200 mT, 100 kHz, 100 °C)	B66421G0000X197

Gapped

Material	A _L value nH	μ_{e}	g approx. mm	Ordering code
N87	160 ±10%	125	0.55	B66421U0160K187
	250 ±10%	195	0.30	B66421U0250K187
	315 ±10%	246	0.22	B66421U0315K187

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	103	-0.734	154	-0.796	138	-0.873

Validity range: K1, K2: 0.10 mm < s < 1.40 mm

K3, K4: $50 \text{ nH} < A_L < 410 \text{ nH}$

EFD 25/13/9

Accessories B66422

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

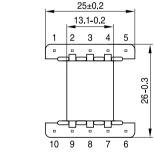
max.operating temperature 180 °C), color code black

Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

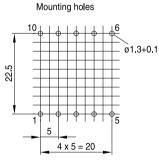
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

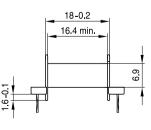
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

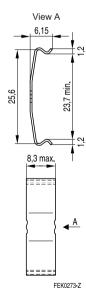
Winding: see "Processing notes", page 176


Squared pins.


Yoke


Material: Stainless spring steel (0.4 mm)


Coil former					Ordering code
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	40.7	50	42.3	10	B66422W1010D001
Yoke (ordering code per piece, 2 are required)					B66422B2000X000


Coil former Yoke

EFD 30/15/9

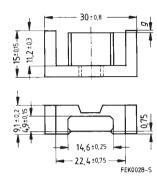
Core B66423

■ E core with flattened, lower center leg for especially flat transformer design

- For DC/DC converters
- Delivery mode: single units

Magnetic characteristics (per set)

 $\Sigma I/A = 0.99 \text{ mm}^{-1}$


 $I_0 = 68 \text{ mm}$

 $A_0 = 69 \text{ mm}^2$

 $A_{min} = 69 \text{ mm}^2$

 $V_e = 4690 \text{ mm}^3$

Approx. weight 24 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N87	2050 +30/–20%	1610	< 2.6 (200 mT, 100 kHz, 100 °C)	B66423G0000X187
N97	2150 +30/–20%	1690	< 2.2 (200 mT, 100 kHz, 100 °C)	B66423G0000X197

Gapped

Material	A _L value nH	μ_{e}	g approx. mm	Ordering code
N87	160 ±10%	125	0.71	B66423U0160K187
	250 ±10%	196	0.38	B66423U0250K187
	315 ±10%	246	0.27	B66423U0315K187

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

Calculation factors (for formulas, see "E cores: general information", page 402)

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N87	125 -0.712		176	-0.796	161	-0.873

Validity range: K1, K2: 0.10 mm < s < 2.00 mm

K3, K4: $70 \text{ nH} < A_L < 630 \text{ nH}$

EFD 30/15/9

Accessories B66424

Coil former

Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:

H

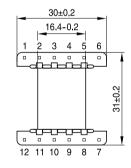
max. operating temperature 180 °C), color code black

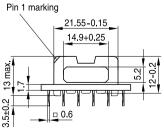
Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD

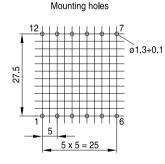
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

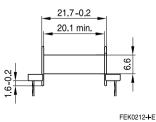
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s

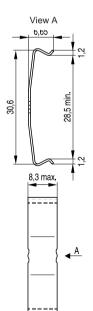
Winding: see "Processing notes", page 176


Squared pins.


Yoke


Material: Stainless spring steel (0.45 mm)


Coil former					Ordering code
Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins	
1	52.3	56.7	37.3	12	B66424W1012D001
Yoke (ordering code per piece, 2 are required)					B66424B2000X000

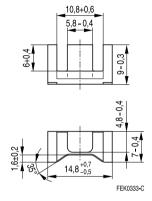

Coil former Yoke

FEK0272-R

Please read *Important notes* on page 2 and *Cautions and warnings* on page 609.

EV 15/9/7

Core B66434


■ For DC/DC converters, storage chokes and EMI suppression chokes

■ Delivery mode: single units

Magnetic characteristics (per set)

$$\begin{split} \Sigma I/A &= 1.4 \text{ mm}^{-1} \\ I_e &= 38.7 \text{ mm} \\ A_e &= 27.7 \text{ mm}^2 \\ A_{min} &= 25.8 \text{ mm}^2 \\ V_e &= 1070 \text{ mm}^3 \end{split}$$

Approx. weight 5.7 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	1150 ±25%	1280	< 0.22 (200 mT, 25 kHz, 100 °C)	B66434G0000X127
N87	1250 ±25%	1390	< 0.60 (200 mT, 100 kHz, 100 °C)	B66434G0000X187
N97	1300 ±25%	1445	< 0.50 (200 mT, 100 kHz, 100 °C)	B66434G0000X197

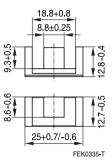
EV 25/13/13

Core B66408

■ For DC/DC converters, storage chokes and EMI suppression chokes

■ Delivery mode: single units

Magnetic characteristics (per set)


 $\Sigma I/A = 0.8 \text{ mm}^{-1}$

I_P = 59 mm

 $A_e = 74 \text{ mm}^2$

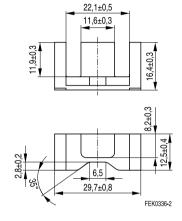
 $A_{min} = 73 \text{ mm}^2$ $V_e = 4370 \text{ mm}^3$

Approx. weight 22 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	2400 +30/–20%	1520	< 0.80 (200 mT, 25 kHz, 100 °C)	B66408G0000X127
N87	2500 +30/–20%	1590	< 2.20 (200 mT, 100 kHz, 100 °C)	B66408G0000X187
N97	2600 +30/–20%	1650	< 2.05 (200 mT, 100 kHz, 100 °C)	B66408G0000X197

EV 30/16/13

Core B66432

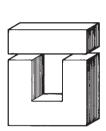

■ For DC/DC converters, storage chokes and EMI suppression chokes

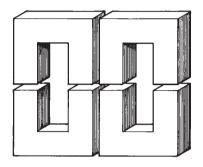
■ Delivery mode: single units

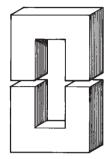
Magnetic characteristics (per set)

 $\Sigma I/A = 0.76 \text{ mm}^{-1}$ $I_e = 74.8 \text{ mm}$ $A_e = 99 \text{ mm}^2$ $A_{min} = 95 \text{ mm}^2$ $V_e = 7410 \text{ mm}^3$

Approx. weight 37 g/set




Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	2600 +30/–20%	1570	< 1.4 (200 mT, 25 kHz, 100 °C)	B66432G0000X127
N87	2800 +30/–20%	1690	< 3.7 (200 mT, 100 kHz, 100 °C)	B66432G0000X187
N97	2900 +30/–20%	1750	< 3.0 (200 mT, 100 kHz, 100 °C)	B66432G0000X197



U and UI cores

General information

FUS0001-3

1 Core shapes and materials

U cores of rectangular cross section and I cores are made of SIFERRIT materials N27 and N87. Owing to their high saturation flux density, high Curie temperature and low dissipation losses, they are suitable for power, pulse and high-voltage transformers. UU and UI cores are preferred for power ratings, since they can be combined in various ways (see illustration above) to produce transformers in the kilowatt range.

2 Ordering, marking and delivery

U and I cores are supplied as single units, not as sets.

U cores with one shortened leg ($\hat{}$ air gap) are available on request.

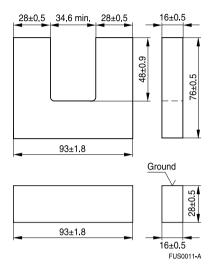
U and I cores are not marked.

3 A₁ and core loss specification

The corresponding test results are tabulated separately for each core shape.

- a) A₁ value (see also "General Definitions", page 127)
 - The A_L value is measured with a fully wound 100-turn coil at a flux density of \hat{B} = 0.25 mT and a frequency of f = 10 kHz. The temperature of the core is equal to room temperature.
- b) Power loss P_V
 - The dissipation loss is specified in W/set. The data are maximum values under the specified measuring conditions. The flux density has been calculated on the basis of a sinusoidal voltage and is referred to the minimum cross-sectional area A_{min} of the core.

U 93/76/16 cores


UI 93/104/16 cores

B67345

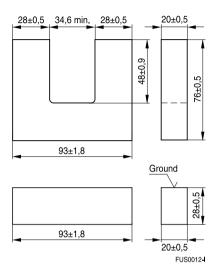
■ For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

	UU 93/152/16	UI 93/104/16	
ΣΙ/Α	0.79	0.58	mm-1
l _e	354	258	mm
A _e	448	448	mm ²
A_{min}	448	448	mm ²
V _e	159000	116000	mm ³
m	800	600	g/set

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
Combination	on UU 93/152/16			
N27	2900 +30/–20%	1820	< 32 (200 mT, 25 kHz, 100 °C)	B67345B0003X027
N87	3100 +30/–20%	1950	< 14 (200 mT, 25 kHz, 100 °C)	B67345B0003X087
Combination	on UI 93/104/16			
N27	3800 +30/–20%	1740	< 24 (200 mT, 25 kHz, 100 °C)	B67345B0003X027 (U) B67345B0004X027 (I)
N87	4100 +30/–20%	1880	<11 (200 mT, 25 kHz, 100 °C)	B67345B0003X087 (U) B67345B0004X087 (I)

U 93/76/20 cores


UI 93/104/20 cores

B67345

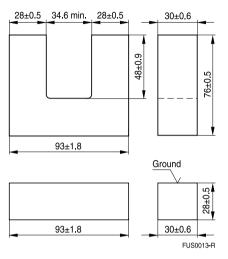
■ For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

	UU 93/152/20	UI 93/104/20	
ΣΙ/Α	0.63	0.46	mm-1
l _e	354	258	mm
A _e	560	560	mm ²
A_{min}	560	560	mm ²
V _e	198000	144000	mm ³
m	1000	750	g/set

Material	A _L value	μ_{e}	P _V	Ordering code
	nH		W/set	
Combination	on UU 93/152/20			
N27	3600 +30/–20%	1800	< 11 (100 mT, 25 kHz, 100 °C)	B67345B0010X027
N87	3900 +30/–20%	1960	< 4 (100 mT, 25 kHz, 100 °C)	B67345B0010X087
Combination	on UI 93/104/20			
N27	4900 +30/–20%	1790	< 8 (100 mT, 25 kHz, 100 °C)	B67345B0010X027 (U) B67345B0011X027 (I)
N87	5300 +30/–20%	1950	< 3 (100 mT, 25 kHz, 100 °C)	B67345B0010X087 (U) B67345B0011X087 (I)

U 93/76/30 cores


UI 93/104/30 cores

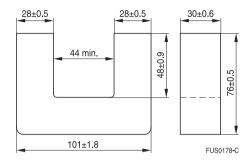
B67345

■ For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

	UU 93/152/30	UI 93/104/30	
ΣΙ/Α	0.42	0.31	mm ⁻¹
l _e	354	258	mm
I _e A _e A _{min}	840	840	mm ²
A_{min}	840	840	mm ²
V _e	297000	217000	mm ³
m	1500	1100	g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
Combination	on UU 93/152/30			
N27	5400 +30/–20%	1800	< 16 (100 mT, 25 kHz, 100 °C)	B67345B0001X027
N87	5700 +30/–20%	1900	< 5.5 (100 mT, 25 kHz, 100 °C)	B67345B0001X087
N97	5700 +30/–20%	1900	< 4 (100 mT, 25 kHz, 100 °C)	B67345B0001X097
Combination	on UI 93/104/30			
N27	7400 +30/–20%	1850	< 12 (100 mT, 25 kHz, 100 °C)	B67345B0001X027 (U) B67345B0002X027 (I)
N87	7900 +30/–20%	1930	< 4 (100 mT, 25 kHz, 100 °C)	B67345B0001X087 (U) B67345B0002X087 (I)


U 101/76/30

Core B67370

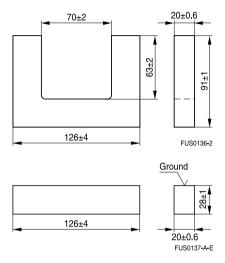
Magnetic characteristics (per set)

 Σ I/A = 0.44 mm⁻¹ I_e = 368 mm A_e = 840 mm² A_{min} = 840 mm² V_e = 310800 mm³

Approx. weight 1600 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	4600 +30/–20%	1580	< 16.5 (100 mT, 25 kHz, 100 °C)	B67370A0002X027
N87	5700 +30/–20%	1990	< 6 (100 mT, 25 kHz, 100 °C)	B67370A0002X187
N97	5900 +30/–20%	2060	< 4.2 (100 mT, 25 kHz, 100 °C)	B67370A0002X197

U 126/91/20 cores


UI 126/119/20 cores

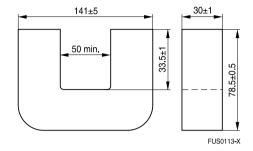
B67385

■ For power transformers >1 kW (20 kHz)

Magnetic characteristics (per set)

	UU 126/182/20	UI 126/119/20	
ΣΙ/Α	0.86	0.63	mm ⁻¹
l _e	480	354	mm
I _e A _e A _{min}	560	560	mm ²
A_{min}	560	560	mm ²
V _e	269000	198000	mm ³
m	1300	950	g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code	
Combination	on UU 126/182/20				
N87	3000 ±25%	2000	< 4.7 (100 mT, 25 kHz, 100 °C)	B67385G0000X187	
Combination	Combination UI 126/119/20				
N87	3900 ±25%	1950	< 3.4 (100 mT, 25 kHz, 100 °C)	B67385G0000X187 (U) B67385P0000X187 (I)	


U 141/78/30

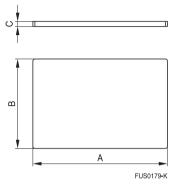
Core B67374

Magnetic characteristics (per set)

 Σ I/A = 0.28 mm⁻¹ I_e = 377 mm A_e = 1350 mm² A_{min} = 1350 mm² V_e = 508950 mm³

Approx. weight 2500 g/set

Material	A _L value nH	μ _e	P _V W/set	Ordering code
N27	7500 ±30%	1670	< 22 (100 mT, 25 kHz, 100 °C)	B67374G0000X127
N87	8900 ±30%	1970	< 10 (100 mT, 25 kHz, 100 °C)	B67374G0000X187
N97	8400 ±30%	1870	< 3.3 (100 mT, 25 kHz, 100 °C)	B67374G0000X197


Ferrite blocks B67410 B67345

■ For combination with large volume E, U cores when sides ground (on request)

- For wireless application
- Various thickness possible

Type of delivery

Pieces

Material	Α	В	C – optional	Approx. weight	Ordering code
	mm	mm	mm	g	
N87	155 ±2.0	110 ±2.0	23 ±1.0 ¹⁾	1900	B67410A0107X087
	100 ±1.5	20 ±0.3	40 ±0.5 ²)*)	390	B67410A0105X087
N95	100 ±2.0	100 ±2.0	5 ±0.4 ^{3)*)}	240	B67410A0218X195
N27	30 ±0.5	28 ±0.5	46.5 ±0.94)	190	B67345B0007X027

Optional height up to 30 mm.
 Optional height up to 45 mm.

³⁾ Optional height up to 35 mm.

⁴⁾ Optional height up to 50 mm.

^{*)} Thickness C is ground.

General information

Our product line includes a wide range of toroids with finely graded diameters ranging from 2.5 to 202 mm.

Other core heights can be supplied on request. All cores are available in the usual materials.

Applications

Toroids are primarily used as EMC chokes for suppressing RF interference in the MHZ region and in signal transformers.

Typical applications for toroids of NiZn ferrites are LAN chokes. One of the materials available for this purpose is K10; other materials on request.

The following high-permeability MnZn materials are available for interference suppression:

- R 2.5 through R 12.5 for telecommunications, e.g. ISDN (N30, T38, T46)
- R 13.3 through R 26 for power line chokes (N30, T65, T35, T37, T38)
- >R 34 for chokes and filters in industrial use (T65)
- Toroids are also increasingly used for power applications. Here, the typical values for amplitude permeability and power loss, as summarized in the section on "SIFERRIT Materials" (page 33), are applicable to the special power materials.

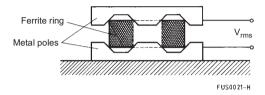
Coating

Toroids are available in different coating versions, thus offering the appropriate solution for every application. The coating not only offers protection for the edges but also provides an insulation function.

For small ring cores, we have introduced a parylene coating which features a low coating thickness and high dielectric strength.

Coatings of ring cores

Version	Epoxy (blue)	Parylene (transparent)
Main application	Medium/big sizes (≥ R 9.53)	Small sizes (< R 9.53)
Layer thickness	< 0.4 mm	0.012 or 0.025 mm
Breakdown voltage (minimum values)	> 1.0 kV (for R 9.53; R 10) > 1.5 kV (for R 12.5 thru R 20) > 2.0 kV (for > R 20)	> 1 kV (standard value)
Mechanical quality	High firmness	Smooth surface
Maximum temperature (short-time)	approx. 180 °C	approx. 130 °C
Advantage	Low influence on A _L value	Very low thickness
UL rating	UL 94 V-0	UL 94 V-0
UL file number	E194412	E194412
Ordering code	B64290 L	B64290 P



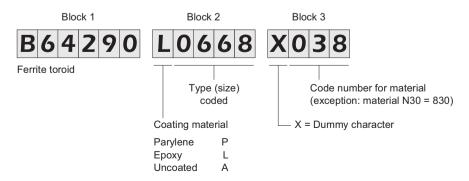
General information

Dielectric strength test

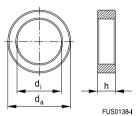
The following test setup is used to test the dielectric strength of the insulating coating: A copper ring is pressed to the top edge of the ring. It touches the ferrite ring at the edges (see diagram).

The test duration is 2 seconds.

Chamfer

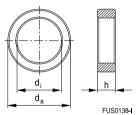

Large toroidal cores use thick wires that are partially subjected to high mechanical stress during winding. This can damage the wire insulation as well as the coating of the cores, thus reducing the breakdown voltage. To avoid this, EPCOS toroids have a chamfer. This prevents any insulation damage, and produces uniform coating thickness at the same time.

FUS0127-3


Core size	Design
Small	Edges rounded by tumbling
Medium	Chamfer on edges and/or radius on the surface
Medium/big	Chamfer on edges

Compilation of the ordering code

Overview B64290



Overview of available sizes

Type Toroid size $(d_a \times d_i \times h)$ mm	∣inch	Type code (ordering code, block 2)	Page
R2.50 × 1.50 × 1.00	R 0.098 × 0.059 × 0.039	P0035	565
R2.50 × 1.50 × 1.30	R 0.098 × 0.059 × 0.051	P0072	565
R2.54 × 1.27 × 1.27	R 0.100 × 0.050 × 0.050	P0734	566
R 3.05 × 1.27 × 1.27	R 0.120 × 0.050 × 0.050	P0683	566
R 3.05 × 1.27 × 2.54	R 0.120 × 0.050 × 0.100	P0739	567
R 3.05 × 1.78 × 2.03	R 0.120 × 0.070 × 0.080	P0733	567
R 3.43 × 1.78 × 1.78	R 0.135 × 0.070 × 0.070	P0731	568
R 3.43 × 1.78 × 2.03	R 0.135 × 0.070 × 0.080	P0745	568
R 3.43 × 1.78 × 2.11	R 0.135 × 0.070 × 0.083	P0709	569
R 3.94 × 1.78 × 1.78	R 0.155 × 0.070 × 0.070	P0732	569
R 3.94 × 2.24 × 1.30	R 0.155 × 0.088 × 0.051	P0061	570
R 3.94 × 2.24 × 2.30	R 0.155 × 0.088 × 0.090	P0723	570
R4.00 × 2.40 × 1.60	R 0.157 × 0.094 × 0.063	P0036	571
R4.00 × 2.40 × 1.80	R 0.157 × 0.094 × 0.071	P0692	571
R 5.84 × 3.05 × 1.52	R 0.230 × 0.120 × 0.060	P0056	572
R 5.84 × 3.05 × 3.00	R 0.230 × 0.120 × 0.118	P0687	572
R 6.30 × 3.80 × 2.50	R 0.248 × 0.150 × 0.098	P0037	573
R 8.00 × 4.00 × 4.00	R 0.315 × 0.158 × 0.158	P0751	573
R9.53 × 4.75 × 3.17	R 0.375 × 0.187 × 0.125	L0062	574
R 10.0 × 6.00 × 4.00	R 0.394 × 0.236 × 0.157	L0038	574
R 10.0 × 6.00 × 7.00	R 0.394 × 0.236 × 0.318	L0783	575
R 12.5 × 7.50 × 5.00	R 0.492 × 0.295 × 0.197	L0044	575
R 12.7 × 7.90 × 6.35	R 0.500 × 0.311 × 0.250	L0742	576
R 13.3 × 8.30 × 5.00	R 0.524 × 0.327 × 0.197	L0644	576
R 14.0 × 9.00 × 5.00	R 0.551 × 0.354 × 0.197	L0658	577
R15.0 × 10.4 × 5.30	R 0.591 × 0.409 × 0.209	L0623	577
R 15.8 × 8.90 × 4.70	R 0.622 × 0.350 × 0.185	L0743	578
R 16.0 × 9.60 × 6.30	R 0.630 × 0.378 × 0.248	L0045	578

Overview B64290

Overview of available sizes (continued)

Туре		Type code	Page
Toroid size $(d_a \times d_i \times h)$	Linale	(ordering code,	
mm	inch	block 2)	
R 17.0 × 10.7 × 6.80	R 0.669 × 0.421 × 0.268	L0652	579
R 18.4 × 5.90 × 5.90	R 0.724 × 0.232 × 0.232	L0697	579
R 20.0 × 10.0 × 7.00	R 0.787 × 0.394 × 0.276	L0632	580
R 22.1 × 13.7 × 6.35	$R0.870 \times 0.539 \times 0.250$	L0638	580
$R22.1\times13.7\times7.90$	$R0.870 \times 0.539 \times 0.311$	L0719	581
R22.1 × 13.7 × 12.5	$R0.870 \times 0.539 \times 0.492$	L0651	581
R 22.6 × 14.7 × 9.20	R 0.890 × 0.579 × 0.362	L0626	582
R25.3 × 14.8 × 10.0	R 0.996 × 0.583 × 0.394	L0618	582
R25.3 × 14.8 × 15.0	R 0.996 × 0.583 × 0.590	L0615	583
R25.3 × 14.8 × 20.0	R 0.996 × 0.583 × 0.787	L0616	583
R29.5 × 19.0 × 14.9	R 1.142 × 0.748 × 0.587	L0647	584
R 30.5 × 20.0 × 12.5	R 1.201 × 0.787 × 0.492	L0657	584
R 34.0 × 20.5 × 10.0	R 1.339 × 0.807 × 0.394	L0058	585
R 34.0 × 20.5 × 12.5	R 1.339 × 0.807 × 0.492	L0048	585
R 36.0 × 23.0 × 15.0	R 1.417 × 0.906 × 0.591	L0674	586
R38.1 × 19.05 × 12.7	R 1.500 × 0.750 × 0.500	L0668	586
R40.0 × 24.0 × 16.0	R 1.575 × 0.945 × 0.630	L0659	587
R41.8 × 26.2 × 12.5	R 1.646 × 1.031 × 0.492	L0022	587
R 50.0 × 30.0 × 20.0	R 1.969 × 1.181 × 0.787	L0082	588
R 58.3 × 32.0 × 18.0	R 2.295 × 1.260 × 0.709	L0043	588
R 58.3 × 40.8 × 17.6	R 2.295 × 1.606 × 0.693	L0040	589
R 58.3 × 40.8 × 20.2	R 2.295 × 1.606 × 0.795	L0042	589
R 63.0 × 38.0 × 25.0	R 2.480 × 1.496 × 0.984	L0699	590
R 68.0 × 48.0 × 13.0	R 2.677 × 1.890 × 0.512	L0696	590
R 87.0 × 54.3 × 13.5	R 3.425 × 2.138 × 0.531	L0730	591
R 102 × 65.8 × 15.0	R4.016 × 2.591 × 0.591	L0084	591
R 140 × 103 × 25.0	R 5.512 × 4.055 × 0.984	A0705	592
R 202 × 153 × 25.0	R7.953 × 6.024 × 0.984	A0711	592
			-

R 2.50 × 1.50 × 1.00

B64290P0035

 $\text{R}\,2.50\times1.50\times1.30$

B64290P0072

■ Parylene coating

R 2.50 \times 1.50 \times 1.00 (mm) R 0.098 \times 0.059 \times 0.039 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
2.50 ±0.12	1.50 ±0.1	1.00 ±0.1	0.098 ±0.005	0.059 ±0.004	0.039 ±0.004	uncoated1)
Coating thickness 0.017 mm						coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	70 ±25%	700	B64290P0035X010	12.30	6.02	0.49	3.00	0.02
T57	410 ±25%	4000	B64290P0035X057					
N30	440 ±25%	4300	B64290P0035X830					
T65	470 ±30%	4600	B64290P0035X065					
T38	1020 ±30%	10000	B64290P0035X038					
T46	1530 ±30%	15000	B64290P0035X046					

■ Parylene coating

R $2.50 \times 1.50 \times 1.30$ (mm) R $0.098 \times 0.059 \times 0.051$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
2.50 ±0.12	1.50 ±0.1	1.30 ±0.12	0.098 ±0.005	0.059 ±0.004	0.051 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μ _i	Ordering code	Magneti	c charact	eristics		Approx.
rial		(approx.)		ΣΙ/Α	le	Ae	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	93 ±25%	700	B64290P0072X010	9.41	6.02	0.64	3.85	0.02
T57	530 ±25%	4000	B64290P0072X057					
T65	600 ±30%	4600	B64290P0072X065					
T38	1320 ±30%	10000	B64290P0072X038					
T46	2000 ±30%	15000	B64290P0072X046					

¹⁾ On request

R 2.54 × 1.27 × 1.27

B64290P0734

 $\textbf{R3.05} \times \textbf{1.27} \times \textbf{1.27}$

B64290P0683

■ Parylene coating

 $R2.54 \times 1.27 \times 1.27 (mm)$ $R0.100 \times 0.050 \times 0.050$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
2.54 ±0.12	1.27 ±0.12	1.27 ±0.12	0.100 ±0.005	0.050 ±0.005	0.050 ±0.005	uncoated1)	
Coating thic	Coating thickness 0.017 mm						

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	Ve	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	120 ±25%	700	B64290P0734X010	7.18	5.53	0.77	4.29	0.03	
T57	690 ±25%	3900	B64290P0734X057						
T65	800 ±30%	4500	B64290P0734X065						
T38	1760 ±30%	10000	B64290P0734X038						
T46	2640 ±30%	15000	B64290P0734X046						

■ Parylene coating

 $R 3.05 \times 1.27 \times 1.27 (mm)$ $R0.120 \times 0.050 \times 0.050$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.05 ±0.12	1.27 ±0.12	1.27 ±0.12	0.120 ±0.005	0.050 ±0.005	0.050 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μί	Ordering code Magnetic characteris			eristics		Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	160 ±25%	700	B64290P0683X010	5.65	5.99	1.06	6.4	0.04
T57	830 ±25%	3700	B64290P0683X057					
T65	1000 ±30%	4500	B64290P0683X065					
T38	2200 ±30%	9900	B64290P0683X038					
T46	3340 ±30%	15000	B64290P0683X046					

¹⁾ On request

R 3.05 × 1.27 × 2.54

B64290P0739

 $\textbf{R3.05} \times \textbf{1.78} \times \textbf{2.03}$

B64290P0733

■ Parylene coating

R 3.05 \times 1.27 \times 2.54 (mm) R 0.120 \times 0.050 \times 0.100 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.05 ±0.12	1.27 ±0.12	2.54 ±0.12	0.120 ±0.005	0.050 ±0.005	0.100 ±0.005	uncoated1)	
Coating thic	Coating thickness 0.017 mm						

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	le	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	330 ±25%	700	B64290P0739X010	2.82	5.99	2.12	12.7	0.08
T57	1700 ±25%	3800	B64290P0739X057					
T65	2000 ±30%	4500	B64290P0739X065					
T38	4200 ±30%	9400	B64290P0739X038					
T46	6500 ±30%	15000	B64290P0739X046					

■ Parylene coating

R 3.05 \times 1.78 \times 2.03 (mm) R 0.120 \times 0.070 \times 0.080 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.05 ±0.12	1.78 ±0.12	2.03 ±0.12	0.120 ±0.005	0.070 ±0.005	0.080 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
K10	160 ±25%	700	B64290P0733X010	5.75	7.23	1.26	9.10	0.06	
T57	870 ±25%	4000	B64290P0733X057						
T65	1000 ±30%	4600	B64290P0733X065						
T38	2150 ±30%	9900	B64290P0733X038						
T46	3250 ±30%	15000	B64290P0733X046						

¹⁾ On request

R 3.43 × 1.78 × 1.78

B64290P0731

 $\textbf{R3.43} \times \textbf{1.78} \times \textbf{2.03}$

B64290P0745

■ Parylene coating

 $\begin{array}{l} R \ 3.43 \times 1.78 \times 1.78 \ (mm) \\ R \ 0.135 \times 0.070 \times 0.070 \ (inch) \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.43 ±0.12	1.78 ±0.12	1.78 ±0.12	0.135 ±0.005	0.070 ±0.005	0.070 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	Ve	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	160 ±25%	700	B64290P0731X010	5.38	7.63	1.42	10.7	0.06	
T57	930 ±25%	4000	B64290P0731X057						
T65	1050 ±30%	4500	B64290P0731X065						
T38	2300 ±30%	10000	B64290P0731X038						
T46	3400 ±30%	15000	B64290P0731X046						

■ Parylene coating

R 3.43 \times 1.78 \times 2.03 (mm) R 0.135 \times 0.070 \times 0.080 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.43 ±0.12	1.78 ±0.12	2.03 ±0.12	0.135 ±0.005	0.070 ±0.005	0.080 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μ_i	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	190 ±25%	700	B64290P0745X010	4.72	7.63	1.62	12.2	0.07	
T57	1060 ±25%	4000	B64290P0745X057						
T65	1200 ±30%	4500	B64290P0745X065						
T38	2650 ±30%	10000	B64290P0745X038						
T46	4000 ±30%	15000	B64290P0745X046						

¹⁾ On request

R 3.43 × 1.78 × 2.11

B64290P0709

 $\textbf{R3.94} \times \textbf{1.78} \times \textbf{1.78}$

B64290P0732

■ Parylene coating

 $R 3.43 \times 1.78 \times 2.11 (mm)$ $R0.135 \times 0.070 \times 0.083$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
3.43 ±0.12	1.78 ±0.12	2.11 ±0.12	0.135 ±0.005	0.070 ±0.005	0.083 ±0.005	uncoated1)		
Coating thickness 0.017 mm								

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	200 ±25%	700	B64290P0709X010	4.54	7.63	1.68	12.7	0.07	
T57	1100 ±25%	4000	B64290P0709X057						
T65	1300 ±30%	4700	B64290P0709X065						
T38	2770 ±30%	10000	B64290P0709X038						
T46	4000 ±30%	15000	B64290P0709X046						

■ Parylene coating

 $R 3.94 \times 1.78 \times 1.78 \text{ (mm)}$ $R0.155 \times 0.070 \times 0.070$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
3.94 ±0.12	1.78 ±0.12	1.78 ±0.12	0.155 ±0.005	0.070 ±0.005	0.070 ±0.005	uncoated1)		
Coating thickness 0.017 mm								

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	200 ±25%	700	B64290P0732X010	4.44	8.10	1.82	14.8	0.08
T57	1100 ±25%	3900	B64290P0732X057					
T65	1350 ±30%	4800	B64290P0732X065					
T38	2830 ±30%	10000	B64290P0732X038					
T46	4200 ±30%	15000	B64290P0732X046					

¹⁾ On request

04/13

 $R3.94 \times 2.24 \times 1.30$ B64290P0061 $R3.94 \times 2.24 \times 2.30$ B64290P0723

■ Parylene coating

 $\begin{array}{l} R \ 3.94 \times 2.24 \times 1.30 \ (mm) \\ R \ 0.155 \times 0.088 \times 0.051 \ (inch) \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.94 ±0.12	2.24 ±0.12	1.30 ±0.12	0.155 ±0.005	0.088 ±0.005	0.051 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		ΣΙ/Α	le	Ae	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	100 ±25%	700	B64290P0061X010	8.56	9.21	1.08	9.90	0.05
T57	550 ±25%	3800	B64290P0061X057					
T65	700 ±30%	4800	B64290P0061X065					
T38	1470 ±30%	10000	B64290P0061X038					
T46	2200 ±30%	15000	B64290P0061X046					

■ Parylene coating

 $\begin{array}{l} R \ 3.94 \times 2.24 \times 2.30 \ (mm) \\ R \ 0.155 \times 0.088 \times 0.090 \ (inch) \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
3.94 ±0.12	2.24 ±0.12	2.30 ±0.15	0.155 ±0.005	0.088 ±0.005	0.090 ±0.006	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
K10	180 ±25%	700	B64290P0723X010	4.85	9.21	1.90	17.5	0.09	
T57	990 ±25%	3800	B64290P0723X057						
T65	1200 ±30%	4800	B64290P0723X065						
T38	2600 ±30%	10000	B64290P0723X038						
T46	3890 ±30%	15000	B64290P0723X046]					

¹⁾ On request

R 4.00 × 2.40 × 1.60

B64290P0036

 $R\,4.00\times2.40\times1.80$

B64290P0692

■ Parylene coating

R 4.00 \times 2.40 \times 1.60 (mm) R 0.157 \times 0.094 \times 0.063 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
4.00 ±0.12	2.40 ±0.12	1.60 ±0.1	0.157 ±0.005	0.094 ±0.004	0.063 ±0.004	uncoated1)		
Coating thickness 0.017 mm								

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Approx.			
rial		(approx.)		ΣΙ/Α	le	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N30	700 ±25%	4300	B64290P0036X830	7.7	9.63	1.25	12.0	0.05
T65	750 ±30%	4600	B64290P0036X065					
T38	1630 ±30%	10000	B64290P0036X038					
T46	2450 ±30%	15000	B64290P0036X046					

■ Parylene coating

R 4.00 \times 2.40 \times 1.80 (mm) R 0.157 \times 0.094 \times 0.071 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
4.00 ±0.12	2.40 ±0.12	1.80 ±0.12	0.157 ±0.005	0.094 ±0.004	0.071 ±0.005	uncoated1)		
Coating thickness 0.017 mm								

Mate-	A _L value	μί	Ordering code	Magneti	Approx.			
rial		(approx.)		ΣΙ/Α	l _e	A _e	Ve	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N30	790 ±25%	4300	B64290P0692X830	6.83	9.63	1.41	13.6	0.07
T65	840 ±30%	4600	B64290P0692X065					
T38	1840 ±30%	10000	B64290P0692X038					
T46	2760 ±30%	15000	B64290P0692X046					

¹⁾ On request

 $R \, 5.84 \times 3.05 \times 1.52 \\ \hspace*{1.5cm} B64290P0056$

 $R5.84 \times 3.05 \times 3.00$ B64290P0687

■ Parylene coating

R 5.84 \times 3.05 \times 1.52 (mm) R 0.230 \times 0.120 \times 0.060 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
5.84 ±0.12	3.05 ±0.12	1.52 ±0.12	0.230 ±0.005	0.120 ±0.005	0.060 ±0.005	uncoated1)		
Coating thickness 0.017 mm								

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N30	850 ±25%	4300	B64290P0056X830	6.36	13.03	2.05	26.7	0.15
T65	1020 ±30%	4600	B64290P0056X065					
T38	1900 ±30%	10000	B64290P0056X038					
T46	2900 ±30%	15000	B64290P0056X046					

■ Parylene coating

R 5.84 \times 3.05 \times 3.00 (mm) R 0.230 \times 0.120 \times 0.118 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
5.84 ±0.12	3.05 ±0.12	3.00 ±0.15	0.230 ±0.005	0.120 ±0.005	0.118 ±0.005	uncoated1)		
Coating thickness 0.017 mm								

Mate-	A _L value	Ordering code	de Magnetic characteristics					
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N30	1680 ±25%	4300	B64290P0687X830	3.22	13.03	4.04	52.6	0.3
T65	1800 ±30%	4600	B64290P0687X065					
T38	3900 ±30%	10000	B64290P0687X038					
T46	5850 ±30%	15000	B64290P0687X046					

¹⁾ On request

R 6.30 × 3.80 × 2.50 B64290P0037

 $R8.00 \times 4.00 \times 4.00$ B64290P0751

■ Parylene coating

R 6.30 \times 3.80 \times 2.50 (mm) R 0.248 \times 0.150 \times 0.098 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)			
6.30 ±0.15	3.80 ±0.12	2.50 ±0.12	0.248 ±0.006	0.150 ±0.005	0.098 ±0.005	uncoated1)		
Coating thic	Coating thickness 0.017 mm							

Characteristics and ordering codes

Mate-	A _L value	alue μ_i Ordering code Magn				Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight		
	nH			mm ^{−1}	mm	mm ²	mm ³	g		
K1	20 ±25%	80	B64290P0037X001	4.97	15.21	3.06	46.5	0.2		
N87	560 ±25%	2200	B64290P0037X087							
N30	1090 ±25%	4300	B64290P0037X830							
T65	1160 ±30%	4600	B64290P0037X065							
T38	2530 ±30%	10000	B64290P0037X038							
T46	3600 ±30%	14000	B64290P0037X046							

■ Parylene coating

R 8.00 \times 4.00 \times 4.00 (mm) R 0.315 \times 0.158 \times 0.158 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)		
8.00 ±0.18	4.00 ±0.12	4.00 ±0.12	0.315 ±0.007	0.158 ±0.005	0.158 ±0.005	uncoated1)	
Coating thickness 0.017 mm							

Mate-	A _L value	μ _i Ordering code M			Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	1200 ±25%	2200	B64290P0751X087	2.26	17.42	7.70	134	0.7	
N30	2400 ±25%	4300	B64290P0751X830						
T65	2550 ±30%	4600	B64290P0751X065						
T38	5500 ±30%	10000	B64290P0751X038						
T46	8000 ±30%	15000	B64290P0751X046						

¹⁾ On request

 $R9.53 \times 4.75 \times 3.17$ B64290L0062

 $R\,10.0\times6.00\times4.00 \\ \hspace*{1.5cm} B64290L0038$

■ Epoxy coating

 $\begin{array}{l} R~9.53\times 4.75\times 3.17~(mm) \\ R~0.375\times 0.187\times 0.125~(inch) \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
9.53 ±0.19	4.75 ±0.12	3.17 ±0.15	0.375 ±0.007	0.187 ±0.005	0.125 ±0.006	uncoated1)
10.5 max.	3.8 min.	4.1 max.	0.413 max.	0.130 min.	0.161 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	Approx.			
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	970 ±25%	2200	B64290L0062X087	2.85	20.72	7.28	151	0.8
N30	1900 ±25%	4300	B64290L0062X830					
T65	2050 ±30%	4600	B64290L0062X065					
T35	2650 ±25%	6000	B64290L0062X035					
T38	4410 ±30%	10000	B64290L0062X038					
T46	6400 ±30%	15000	B64290L0062X046					

■ Epoxy coating

R $10.0 \times 6.00 \times 4.00$ (mm) R $0.394 \times 0.236 \times 0.157$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
10.0 ±0.2	6.0 ±0.15	4.00 ±0.15	0.394 ±0.008	0.236 ±0.006	0.157 ±0.006	uncoated1)
10.8 max.	5.25 min.	4.75 max.	0.433 max.	0.199 min.	0.195 max.	coated

Mate-	A _L value	μ_i	Ordering code	Magneti	Approx.			
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N49	610 ±25%	1500	B64290L0038X049	3.07	24.07	7.83	188	0.9
N87	900 ±25%	2200	B64290L0038X087					
N30	1760 ±25%	4300	B64290L0038X830					
T65	1900 ±30%	4700	B64290L0038X065					
T35	2460 ±25%	6000	B64290L0038X035					
T37	2660 ±25%	6500	B64290L0038X037					
T38	4090 ±30%	10000	B64290L0038X038					
T46	6000 ±30%	15000	B64290L0038X046					

¹⁾ On request

 $R10.0 \times 6.00 \times 7.00$ B64290L0783

R 12.5 × 7.50 × 5.00

B64290L0044

■ Epoxy coating

R 10.0 \times 6.00 \times 7.00 (mm) R 0.394 \times 0.236 \times 0.318 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
10.0 ±0.2	6.0 ±0.15	7.00 ±0.15	0.394 ±0.008	0.236 ±0.006	0.275 ±0.006	uncoated1)
10.8 max.	5.25 min.	7.75 max.	0.433 max.	0.199 min.	0.318 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	Approx.			
rial	nH	(approx.)		ΣI/A mm ⁻¹	l _e mm	A _e mm ²	V _e mm ³	weight
	11111			1111111	1111111	111111-	11111111	g
K10	450 ±25%	630	B64290L0783X010	1.76	24.07	13.7	330	1.7
N30	3070 ±25%	4300	B64290L0783X830					
T65	3360 ±30%	4700	B64290L0783X065					
T38	7150 ±30%	10000	B64290L0783X038					
T46	10700 ±30%	15000	B64290L0783X046					

■ Epoxy coating

R 12.5 \times 7.50 \times 5.00 (mm) R 0.492 \times 0.295 \times 0.197 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
12.5 ±0.3	7.5 ±0.2	5.00 ±0.15	0.492 ±0.012	0.295 ±0.008	0.197 ±0.005	uncoated1)
13.6 max.	6.5 min.	5.95 max.	0.535 max.	0.256 min.	0.234 max.	coated

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
N49	660 ±25%	1300	B64290L0044X049	2.46	30.09	12.23	368	1.8	
N87	1120 ±25%	2200	B64290L0044X087						
N30	2200 ±25%	4300	B64290L0044X830						
T65	2400 ±30%	4700	B64290L0044X065						
T35	3060 ±25%	6000	B64290L0044X035						
T37	3320 ±25%	6500	B64290L0044X037						
T38	5110 ±30%	10000	B64290L0044X038						

¹⁾ On request

 $R12.7 \times 7.90 \times 6.35 \\ B64290L0742$

■ Epoxy coating

 $R\,13.3\times8.30\times5.00$

R 12.7 \times 7.90 \times 6.35 (mm) R 0.500 \times 0.311 \times 0.250 (inch)

B64290L0644

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
12.7 ±0.3	7.9 ±0.25	6.35 ±0.2	0.500 ±0.012	0.311 ±0.010	0.250 ±0.008	uncoated1)
13.6 max.	7.10 min.	7.15 max.	0.535 max.	0.281 min.	0.281 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
N87	1330 ±25%	2200	B64290L0742X087	2.08	31.17	14.96	466	2.4	
N30	2600 ±25%	4300	B64290L0742X830						
T65	2850 ±30%	4700	B64290L0742X065						
T35	3620 ±25%	6000	B64290L0742X035						
T37	3920 ±25%	6500	B64290L0742X037						
T38	6030 ±30%	10000	B64290L0742X038						

■ Epoxy coating

R 13.3 \times 8.30 \times 5.00 (mm) R 0.524 \times 0.327 \times 0.197 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
13.3 ±0.3	8.3 ±0.3	5.00 ±0.15	0.524 ±0.012	0.327 ±0.012	0.197 ±0.005	uncoated1)
14.4 max.	7.2 min.	5.95 max.	0.567 max.	0.283 min.	0.234 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	ering code Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
N87	1040 ±25%	2200	B64290L0644X087	2.67	32.70	12.27	401	1.8	
N30	2030 ±25%	4300	B64290L0644X830						
T65	2300 ±30%	4900	B64290L0644X065						
T35	2830 ±25%	6000	B64290L0644X035						
T37	3060 ±25%	6500	B64290L0644X037						
T38	4700 ±30%	10000	B64290L0644X038						

¹⁾ On request

 $R 14.0 \times 9.00 \times 5.00$ B64290L0658

 $R\,15.0\times 10.4\times 5.30 \\$

■ Epoxy coating

R 14.0 \times 9.00 \times 5.00 (mm) R 0.551 \times 0.354 \times 0.197 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
14.0 ±0.3	9.0 ±0.25	5.00 ±0.2	0.551 ±0.012	0.354 ±0.012	0.197 ±0.008	uncoated1)
15.1 max.	7.95 min.	6.0 max.	0.594 max.	0.313 min.	0.236 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		Σ I/A I_e A_e V_e		weight		
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	970 ±25%	2200	B64290L0658X087	2.84	34.98	12.30	430	2.0
N30	1900 ±25%	4300	B64290L0658X830					
T65	2300 ±30%	5200	B64290L0658X065					
T35	2650 ±25%	6000	B64290L0658X035					
T37	2880 ±25%	6500	B64290L0658X037					
T38	4420 ±30%	10000	B64290L0658X038					

■ Epoxy coating

R 15.0 \times 10.4 \times 5.30 (mm) R 0.591 \times 0.409 \times 0.209 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
15.0 ±0.5	10.4 ±0.4	5.30 ±0.3	0.591 ±0.020	0.409 ±0.016	0.209 ±0.012	uncoated1)
16.3 max.	9.2 min.	6.4 max.	0.642 max.	0.362 min.	0.252 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	850 ±25%	2200	B64290L0623X087	3.24	39.02	12.05	470	2.4	
N30	1670 ±25%	4300	B64290L0623X830						
T65	2020 ±30%	5200	B64290L0623X065						
T35	2330 ±25%	6000	B64290L0623X035						
T37	2520 ±25%	6500	B64290L0623X037						
T38	3880 ±30%	10000	B64290L0623X038						

¹⁾ On request

 $R15.8 \times 8.90 \times 4.70$ B64290L0743

 $R\,16.0\times 9.60\times 6.30$

B64290L0045

■ Epoxy coating

R 15.8 \times 8.90 \times 4.70 (mm) R 0.622 \times 0.350 \times 0.185 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
15.8 ±0.38	8.9 ±0.25	4.70 ±0.13	0.622 ±0.015	0.350 ±0.010	0.185 ±0.005	uncoated1)
16.8 max.	8.05 min.	5.45 max.	0.661 max.	0.317 min.	0.215 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί					Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	1190 ±25%	2200	B64290L0743X087	2.33	36.75	15.78	580	3.0
N30	2320 ±25%	4300	B64290L0743X830					
T65	2800 ±30%	5200	B64290L0743X065					
T35	3240 ±25%	6000	B64290L0743X035					
T37	3500 ±25%	6500	B64290L0743X037					
T38	5400 ±30%	10000	B64290L0743X038					

■ Epoxy coating

R $16.0 \times 9.60 \times 6.30$ (mm) R $0.630 \times 0.378 \times 0.248$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
16.0 ±0.4	9.6 ±0.3	6.30 ±0.2	0.630 ±0.016	0.378 ±0.012	0.248 ±0.008	uncoated1)
17.2 max.	8.5 min.	7.3 max.	0.677 max.	0.335 min.	0.287 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	1420 ±25%	2200	B64290L0045X087	1.95	38.52	19.73	760	3.7
N30	2770 ±25%	4300	B64290L0045X830					
T65	3350 ±30%	5200	B64290L0045X065					
T35	3870 ±25%	6000	B64290L0045X035					
T37	4190 ±25%	6500	B64290L0045X037					
T38	6440 ±30%	10000	B64290L0045X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.45 W/core

¹⁾ On request

R 17.0 × 10.7 × 6.80 B64290L0652

 $R18.4\times5.90\times5.90$

B64290L0697

■ Epoxy coating

R 17.0 \times 10.7 \times 6.80 (mm) R 0.669 \times 0.421 \times 0.268 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
17.0 ±0.4	10.7 ±0.3	6.80 ±0.2	0.669 ±0.016	0.421 ±0.012	0.268 ±0.008	uncoated1)
18.2 max.	9.6 min.	7.8 max.	0.717 max.	0.378 min.	0.307 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	c charact		Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	1390 ±25%	2200	B64290L0652X087	2.00	42.00	21.04	884	4.4
N30	2710 ±25%	4300	B64290L0652X830					
T65	3250 ±30%	5200	B64290L0652X065					
T35	3770 ±25%	6000	B64290L0652X035					
T37	4080 ±25%	6500	B64290L0652X037					
T38	6280 ±30%	10000	B64290L0652X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.55 W/core

■ Epoxy coating

R 18.4 \times 5.90 \times 5.90 (mm) R 0.724 \times 0.232 \times 0.232 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
18.4 ±0.4	5.9 ±0.3	5.90 ±0.2	0.724 ±0.016	0.232 ±0.012	0.232 ±0.008	uncoated1)
19.5 max.	4.8 min.	6.7 max.	0.768 max.	0.189 min.	0.264 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	c characteristics			Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	2950 ±25%	2200	B64290L0697X087	0.94	31.03	33.14	1029	6.9	
N30	5770 ±25%	4300	B64290L0697X830						
T65	6680 ±30%	5000	B64290L0697X065						
T35	8020 ±25%	6000	B64290L0697X035						
T37	8690 ±25%	6500	B64290L0697X037						
T38	13400 ±30%	10000	B64290L0697X038						

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.82 W/core

¹⁾ On request

 $R\,20.0\times10.0\times7.00$ B64290L0632

 $\textbf{R22.1} \times \textbf{13.7} \times \textbf{6.35}$ B64290L0638

■ Epoxy coating

 $R20.0 \times 10.0 \times 7.00 \text{ (mm)}$ $R0.787 \times 0.394 \times 0.276$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
20.0 ±0.4	10.0 ±0.25	7.00 ±0.3	0.787 ±0.016	0.394 ±0.010	0.276 ±0.012	uncoated1)
21.2 max.	8.95 min.	8.1 max.	0.835 max.	0.352 min.	0.319 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	2130 ±25%	2200	B64290L0632X087	1.30	43.55	33.63	1465	7.6
N30	4160 ±25%	4300	B64290L0632X830					
T35	5000 ±25%	5100	B64290L0632X035					
T65	5050 ±30%	5200	B64290L0632X065					
T37	6280 ±25%	6500	B64290L0632X037					
T38	9740 ±30%	10000	B64290L0632X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.95 W/core

■ Epoxy coating

 $R 22.1 \times 13.7 \times 6.35 (mm)$ $R0.870 \times 0.539 \times 0.250$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
22.1 ±0.4	13.7 ±0.3	6.35 ±0.3	0.870 ±0.016	0.539 ±0.012	0.250 ±0.012	uncoated1)
23.3 max.	12.6 min.	7.4 max.	0.917 max.	0.496 min.	0.291 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	1340 ±25%	2200	B64290L0638X087	2.07	54.15	26.17	1417	6.8
N30	2610 ±25%	4300	B64290L0638X830					
T65	3160 ±30%	5200	B64290L0638X065					
T35	3200 ±25%	5300	B64290L0638X035					
T37	3950 ±25%	6500	B64290L0638X037					
T38	6070 ±30%	10000	B64290L0638X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 0.85 W/core

¹⁾ On request

R22.1 \times 13.7 \times 7.90 B64290L0719

R22.1 × 13.7 × 12.5

■ Epoxy coating

R 22.1 \times 13.7 \times 7.90 (mm) R 0.870 \times 0.539 \times 0.311 (inch)

B64290L0651

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
22.1 ±0.4	13.7 ±0.3	7.90 ±0.3	0.870 ±0.016	0.539 ±0.012	0.311 ±0.012	uncoated1)
23.3 max.	12.6 min.	9.0 max.	0.917 max.	0.496 min.	0.354 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics			Approx.
rial		(approx.)		ΣI/A	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm^3	g
N49	1130 ±25%	1500	B64290L0719X049	1.66	54.2	32.6	1763	8.4
N87	1660 ±25%	2200	B64290L0719X087					
N30	3250 ±25%	4300	B64290L0719X830					
T65	3930 ±30%	5200	B64290L0719X065					
T35	4000 ±25%	5300	B64290L0719X035					
T37	4900 ±25%	6500	B64290L0719X037					
T38	7570 ±30%	10000	B64290L0719X038					

N49: P_V (50 mT, 500 kHz, 100 °C) < 0.30 W/core N87: P_V (200 mT, 100 kHz, 100 °C) < 1.05 W/core

■ Epoxy coating

R 22.1 \times 13.7 \times 12.5 (mm) R 0.870 \times 0.539 \times 0.492 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
22.1 ±0.4	13.7 ±0.3	12.5 ±0.5	0.870 ±0.016	0.539 ±0.012	0.492 ±0.020	uncoated1)
23.3 max.	12.6 min.	13.8 max.	0.917 max.	0.496 min.	0.543 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	2630 ±25%	2200	B64290L0651X087	1.05	54.15	51.15	2789	14
N30	5140 ±25%	4300	B64290L0651X830					
T35	6000 ±25%	5000	B64290L0651X035					
T65	6200 ±30%	5200	B64290L0651X065					
T37	7770 ±25%	6500	B64290L0651X037					
T38	12000 ±30%	10000	B64290L0651X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 1.75 W/core

¹⁾ On request

R 22.6 \times 14.7 \times 9.20 B64290L0626

 $R25.3 \times 14.8 \times 10.0$ B64290L0618

■ Epoxy coating

R 22.6 \times 14.7 \times 9.20 (mm) R 0.890 \times 0.579 \times 0.362 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
22.6 ±0.4	14.7 ±0.2	9.20 ±0.2	0.890 ±0.016	0.579 ±0.008	0.362 ±0.008	uncoated1)
23.8 max.	13.7 min.	10.2 max.	0.937 max.	0.539 min.	0.402 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	1740 ±25%	2200	B64290L0626X087	1.59	56.82	35.78	2033	9.8
N30	3420 ±25%	4300	B64290L0626X830					
T65	4100 ±30%	5200	B64290L0626X065					
T35	4200 ±25%	5300	B64290L0626X035					
T37	5170 ±25%	6500	B64290L0626X037					
T38	7900 ±30%	10000	B64290L0626X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 1.25 W/core

■ Epoxy coating

R 25.3 \times 14.8 \times 10.0 (mm) R 0.996 \times 0.583 \times 0.394 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
25.3 ±0.5	14.8 ±0.5	10.0 ±0.2	0.996 ±0.020	0.583 ±0.020	0.394 ±0.008	uncoated1)
26.6 max.	13.5 min.	11.0 max.	1.047 max.	0.531 min.	0.433 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code Magnetic characteristics					Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	2360 ±25%	2200	B64290L0618X087	1.17	60.07	51.26	3079	16	
N30	4620 ±25%	4300	B64290L0618X830						
T65	5350 ±30%	5000	B64290L0618X065						
T35	5400 ±25%	5000	B64290L0618X035						
T37	6970 ±25%	6500	B64290L0618X037						
T38	10700 ±30%	10000	B64290L0618X038						

N87: P_V (200 mT, 100 kHz, 100 °C) < 2 W/core

¹⁾ On request

R 25.3 × 14.8 × 15.0

B64290L0615

 $R\,25.3\times14.8\times20.0$

B64290L0616

■ Epoxy coating

R 25.3 \times 14.8 \times 15.0 (mm) R 0.996 \times 0.583 \times 0.590 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
25.3 ±0.5	14.8 ±0.5	15.0 ±0.4	0.996 ±0.020	0.583 ±0.020	0.590 ±0.016	uncoated1)
26.6 max.	13.5 min.	16.2 max.	1.047 max.	0.531 min.	0.638 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	3500 ±25%	2200	B64290L0615X087	0.78	60.07	76.89	4619	24	
N30	6930 ±25%	4300	B64290L0615X830						
T65	8000 ±30%	5000	B64290L0615X065						
T37	10460 ±25%	6500	B64290L0615X037						
T38	16100 ±30%	10000	B64290L0615X038						

N87: P_V (200 mT, 100 kHz, 100 °C) < 3 W/core

■ Epoxy coating

R 25.3 \times 14.8 \times 20.0 (mm) R 0.996 \times 0.583 \times 0.787 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
25.3 ±0.5	14.8 ±0.5	20.0 ±0.5	0.996 ±0.020	0.583 ±0.020	0.787 ±0.020	uncoated1)
26.6 max.	13.5 min.	21.3 max.	1.047 max.	0.531 min.	0.839 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code Magnetic characteristics					Approx.	
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	4680 ±25%	2200	B64290L0616X087	0.59	60.07	102.5	6157	33	
N30	9160 ±25%	4300	B64290L0616X830						
T65	10600 ±30%	5000	B64290L0616X065						
T35	10700 ±25%	5000	B64290L0616X035						
T37	13800 ±25%	6400	B64290L0616X037						
T38	21300 ±30%	10000	B64290L0616X038						

N87: P_V (200 mT, 100 kHz, 100 °C) < 4.1 W/core

¹⁾ On request

R 29.5 × 19.0 × 14.9 B64290L0647

 $R30.5 \times 20.0 \times 12.5$ B64290L0657

■ Epoxy coating

 $\begin{array}{l} R\,29.5\times19.0\times14.9\;(mm) \\ R\,1.142\times0.748\times0.587\;(inch) \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
29.5 ±0.7	19.0 ±0.5	14.9 ±0.4	1.142 ±0.028	0.748 ±0.020	0.587 ±0.016	uncoated1)
31.0 max.	17.7 min.	16.1 max.	1.220 max.	0.697 min.	0.634 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	2880 ±25%	2200	B64290L0647X087	0.96	73.78	76.98	5680	27
N30	5630 ±25%	4300	B64290L0647X830					
T65	6800 ±30%	5200	B64290L0647X065					
T37	8500 ±25%	6500	B64290L0647X037					
T38	13100 ±30%	10000	B64290L0647X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 2.95 W/core

■ Epoxy coating

R $30.5 \times 20.0 \times 12.5$ (mm) R $1.201 \times 0.787 \times 0.492$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
30.5 ±1.0	20.0 ±0.6	12.5 ±0.4	1.201 ±0.039	0.787 ±0.024	0.492 ±0.016	uncoated1)
32.1 max.	18.8 min.	13.5 max.	1.264 max.	0.694 min.	0.531 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	2320 ±25%	2200	B64290L0657X087	1.19	77.02	64.66	4980	25
N30	4540 ±25%	4300	B64290L0657X830					
T65	5400 ±30%	5100	B64290L0657X065					
T37	6400 ±25%	6100	B64290L0657X037					
T38	10600 ±30%	10000	B64290L0657X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 2.65 W/core

¹⁾ On request

 $\label{eq:R34.0} \begin{array}{l} \text{R 34.0} \times 20.5 \times 10.0 \\ \text{R 34.0} \times 20.5 \times 12.5 \end{array}$

B64290L0058

B64290L0048

■ Epoxy coating

R 34.0 \times 20.5 \times 10.0 (mm) R 1.339 \times 0.807 \times 0.394 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
34.0 ±0.7	20.5 ±0.5	10.0 ±0.3	1.339 ±0.028	0.807 ±0.020	0.394 ±0.012	uncoated1)
35.5 max.	19.2 min.	11.1 max.	1.398 max.	0.756 min.	0.437 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magnetic characteristics				Approx.	
rial		(approx.)		ΣΙ/Α	le	A _e	V _e	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
N87	2230 ±25%	2200	B64290L0058X087	1.24	82.06	66.08	5423	27	
N30	4360 ±25%	4300	B64290L0058X830						
T65	5100 ±30%	5000	B64290L0058X065						
T37	6100 ±25%	6000	B64290L0058X037						
T38	10100 ±30%	10000	B64290L0058X038						

N87: P_V (200 mT, 100 kHz, 100 °C) < 3.4 W/core

■ Epoxy coating

R $34.0 \times 20.5 \times 12.5$ (mm) R $1.339 \times 0.807 \times 0.492$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
34.0 ±0.7	20.5 ±0.5	12.5 ±0.3	1.339 ±0.028	0.807 ±0.020	0.492 ±0.012	uncoated1)
35.5 max.	19.2 min.	13.6 max.	1.398 max.	0.756 min.	0.535 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i Ordering code		Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	2790 ±25%	2200	B64290L0048X087	0.99	82.06	82.60	6778	33
N30	5460 ±25%	4300	B64290L0048X830					
T65	6400 ±30%	5000	B64290L0048X065					
T37	7600 ±25%	6000	B64290L0048X037					
T38	12700 ±30%	10000	B64290L0048X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 4.2 W/core

¹⁾ On request

 $R\,36.0\times23.0\times15.0$

B64290L0674

 $\textbf{R38.1} \times \textbf{19.05} \times \textbf{12.7}$

B64290L0668

■ Epoxy coating

 $\begin{array}{l} \text{R 36.0} \times \text{23.0} \times \text{15.0 (mm)} \\ \text{R 1.417} \times \text{0.906} \times \text{0.591 (inch)} \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
36.0 ±0.7	23.0 ±0.5	15.0 ±0.4	1.417 ±0.028	0.906 ±0.020	0.591 ±0.016	uncoated1)
37.5 max.	21.7 min.	16.2 max.	1.476 max.	0.854 min.	0.638 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magnetic characteristics			Approx.	
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	2940 ±25%	2200	B64290L0674X087	0.94	89.65	95.89	8597	43
N30	5750 ±25%	4300	B64290L0674X830					
T65	6800 ±30%	5000	B64290L0674X065					
T37	8000 ±25%	6000	B64290L0674X037					
T38	13500 ±30%	10000	B64290L0674X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 5.4 W/core

■ Epoxy coating

R 38.1 \times 19.05 \times 12.7 (mm) R 1.500 \times 0.750 \times 0.500 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
38.1 ±0.5	19.05 ±0.4	12.7 ±0.3	1.500 ±0.020	0.750 ±0.016	0.500 ±0.012	uncoated1)
39.4 max.	17.85 min.	13.8 max.	1.551 max.	0.703 min.	0.543 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magnetic characteristics				Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
N87	3870 ±25%	2200	B64290L0668X087	0.71	82.97	116.2	9644	52
N30	7570 ±25%	4300	B64290L0668X830					
T65	8800 ±30%	5000	B64290L0668X065					
T37	10500 ±25%	6000	B64290L0668X037					
T38	17600 ±30%	10000	B64290L0668X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 6.5 W/core

¹⁾ On request

R40.0 × 24.0 × 16.0

B64290L0659

 $R\,41.8\times26.2\times12.5$

B64290L0022

■ Epoxy coating

R 40.0 \times 24.0 \times 16.0 (mm) R 1.575 \times 0.945 \times 0.630 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
40.0 ±1.0	24.0 ±0.7	16.0 ±0.4	1.575 ±0.039	0.945 ±0.028	0.630 ±0.016	uncoated1)
41.8 max.	22.5 min.	17.2 max.	1.646 max.	0.886 min.	0.677 max.	coated

Characteristics and ordering codes

Mate-	A _L value	_L value μ _i Ordering code		Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	Ve	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
N87	3590 ±25%	2200	B64290L0659X087	0.77	96.29	125.3	12070	61
N30	7000 ±25%	4300	B64290L0659X830					
T65	8200 ±30%	5000	B64290L0659X065					
T35	8200 ±25%	5000	B64290L0659X035					
T37	9800 ±25%	6000	B64290L0659X037					

N87: P_V (200 mT, 100 kHz, 100 °C) < 7.6 W/core

■ Epoxy coating

R 41.8 \times 26.2 \times 12.5 (mm) R 1.646 \times 1.031 \times 0.492 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
41.8 ±1.0	26.2 ±0.6	12.5 ±0.3	1.646 ±0.039	1.031 ±0.024	0.492 ±0.012	uncoated1)
43.6 max.	24.8 min.	13.6 max.	1.717 max.	0.976 min.	0.535 max.	coated

Characteristics and ordering codes

Mate-	- ' '		Ordering code	Magneti	Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	le	A _e	V _e	weight	
	nH			mm ^{−1}	mm	mm ²	mm ³	g	
N87	2560 ±25%	2200	B64290L0022X087	1.08	103.0	95.75	9862	50	
N30	5000 ±25%	4300	B64290L0022X830						
T65	5800 ±30%	5000	B64290L0022X065						
T37	7000 ±25%	6000	B64290L0022X037						
T38	11600 ±30%	10000	B64290L0022X038]					

N87: P_V (200 mT, 100 kHz, 100 °C) < 6 W/core

¹⁾ On request

 $R\,50.0\times30.0\times20.0$

B64290L0082

 $R\,58.3\times32.0\times18.0$

B64290L0043

■ Epoxy coating

 $R50.0 \times 30.0 \times 20.0 \text{ (mm)}$ $R1.969 \times 1.181 \times 0.787$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
50.0 ±1.0	30.0 ±0.7	20.0 ±0.5	1.969 ±0.039	1.181 ±0.028	0.787 ±0.020	uncoated1)
51.8 max.	28.5 min.	21.3 max.	2.039 max.	1.122 min.	0.839 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	1400 ±25%	700	B64290A0082X010	0.62	120.4	195.7	23560	120
N87	4460 ±25%	2200	B64290L0082X087					
N30	8700 ±25%	4300	B64290L0082X830					
T65	10000 ±30%	4900	B64290L0082X065					
T37	12000 ±25%	6000	B64290L0082X037					
T38	17400 ±30%	8500	B64290L0082X038					

N87: P_V (200 mT, 100 kHz, 100 °C) < 14.2 W/core

■ Epoxy coating

 $R 58.3 \times 32.0 \times 18.0 (mm)$ $R2.295 \times 1.260 \times 0.709$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
58.3 ±1.0	32.0 ±0.7	18.0 ±0.5	2.295 ±0.039	1.260 ±0.028	0.709 ±0.020	uncoated1)
60.1 max.	30.5 min.	19.3 max.	2.366 max.	1.201 min.	0.760 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	I _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	1500 ±25%	700	B64290A0043X010	0.58	134.0	230.0	30710	160
N87	4800 ±25%	2200	B64290L0043X087					
N30	9300 ±25%	4300	B64290L0043X830					
T37	13000 ±25%	6000	B64290L0043X037					

N87: P_V (200 mT, 100 kHz, 100 °C) < 19 W/core

¹⁾ On request

R 58.3 × 40.8 × 17.6

B64290L0040

 $R\,58.3\times40.8\times20.2$

B64290L0042

■ Epoxy coating

 $\begin{array}{l} \text{R 58.3} \times 40.8 \times 17.6 \text{ (mm)} \\ \text{R 2.295} \times 1.606 \times 0.693 \text{ (inch)} \end{array}$

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
58.3 ±1.0	40.8 ±0.8	17.6 ±0.4	2.295 ±0.039	1.606 ±0.031	0.693 ±0.016	uncoated1)
60.1 max.	39.2 min.	18.8 max.	2.366 max.	1.543 min.	0.740 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	le	A _e	Ve	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	900 ±25%	700	B64290A0040X010	1.00	152.4	152.4	23230	115	
N87	2760 ±25%	2200	B64290L0040X087						
N30	5400 ±25%	4300	B64290L0040X830						
T65	6250 ±30%	5000	B64290L0040X065						
T37	7160 ±25%	5700	B64290L0040X037						

N87: P_V (200 mT, 100 kHz, 100 °C) < 14.5 W/core

■ Epoxy coating

R $58.3 \times 40.8 \times 20.2$ (mm) R $2.295 \times 1.606 \times 0.795$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
58.3 ±1.0	40.8 ±0.8	20.2 ±0.5	2.295 ±0.039	1.606 ±0.031	0.795 ±0.020	uncoated1)
60.1 max.	39.2 min.	21.5 max.	2.366 max.	1.543 min.	0.846 max.	coated

Characteristics and ordering codes

Mate-			Ordering code	Magneti	c charact	eristics		Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	1000 ±25%	700	B64290A0042X010	0.87	152.4	174.9	26660	130
N87	3200 ±25%	2200	B64290L0042X087					
N30	6200 ±25%	4300	B64290L0042X830					
T65	7200 ±30%	5000	B64290L0042X065					
T37	8000 ±25%	5600	B64290L0042X037					

N87: P_V (200 mT, 100 kHz, 100 °C) < 16.6 W/core

¹⁾ On request

R 63.0 × 38.0 × 25.0

 $R\,68.0\times48.0\times13.0$

B64290L0699 B64290L0696

R $63.0 \times 38.0 \times 25.0$ (mm) R $2.480 \times 1.496 \times 0.984$ (inch)

■ Epoxy coating Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
63.0 ±1.5	38.0 ±1.2	25.0 ±0.8	2.480 ±0.059	1.496 ±0.047	0.984 ±0.031	uncoated1)
65.3 max.	36.0 min.	26.6 max.	2.571 max.	1.417 min.	1.047 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Magnetic characteristics			
rial		(approx.)		ΣΙ/Α	le	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	1800 ±25%	700	B64290A0699X010	0.50	152.1	305.9	46530	240
N87	5000 ±25%	2200	B64290L0699X087					
N30	10800 ±25%	4300	B64290L0699X830					
T65	12600 ±30%	5000	B64290L0699X065					
T37	13900 ±25%	5500	B64290L0699X037					

N87: P_V (100 mT, 100 kHz, 100 °C) < 5.2 W/core

■ Epoxy coating

R $68.0 \times 48.0 \times 13.0$ (mm) R $2.677 \times 1.890 \times 0.512$ (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
68.0 ±1.2	48.0 ±1.0	13.0 ±0.4	2.677 ±0.047	1.890 ±0.039	0.512 ±0.015	uncoated1)
70.0 max.	46.2 min.	14.2 max.	2.756 max.	1.819 min.	0.559 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	600 ±25%	700	B64290A0696X010	1.39	178.6	128.7	22980	115
N87	1990 ±25%	2200	B64290L0696X087					
N30	3890 ±25%	4300	B64290L0696X830					
T65	4500 ±30%	5000	B64290L0696X065					
T37	5000 ±25%	5500	B64290L0696X037					

N87: P_V (200 mT, 100 kHz, 100 °C) < 13 W/core

¹⁾ On request

 $R87.0 \times 54.3 \times 13.5$ B64290L0730

R 102 × 65.8 × 15.0

■ Epoxy coating

R 87.0 \times 54.3 \times 13.5 (mm) R 3.425 \times 2.138 \times 0.531 (inch)

B64290L0084

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
87.0 ±1.5	54.3 ±1.1	13.5 ±0.3	3.425 ±0.059	2.138 ±0.043	0.531 ±0.012	uncoated1)
89.3 max.	52.4 min.	14.8 max.	3.516 max.	2.063 min.	0.583 max.	coated

Characteristics and ordering codes

Mate-	- ' '		Ordering code	Magneti	Magnetic characteristics				
rial		(approx.)		ΣΙ/Α	l _e	A _e	Ve	weight	
	nH			mm ⁻¹	mm	mm ²	mm ³	g	
K10	900 ±25%	700	B64290A0730X010	0.99	213.9	216.7	46360	235	
N87	2790 ±25%	2200	B64290L0730X087						
N30	5400 ±25%	4300	B64290L0730X830						
T65	6280 ±30%	5000	B64290L0730X065						
T37	7000 ±25%	5500	B64290L0730X037						

N87: P_V (100 mT, 100 kHz, 100 °C) < 5 W/core

■ Epoxy coating

R 102 \times 65.8 \times 15.0 (mm) R 4.016 \times 2.591 \times 0.591 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
102.0 ±2.0	65.8 ±1.3	15.0 ±0.5	4.016 ±0.079	2.591 ±0.051	0.591 ±0.020	uncoated1)
104.8 max.	63.7 min.	16.5 max.	4.126 max.	2.508 min.	0.650 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μί	Ordering code	Magneti	Approx.			
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	900 ±25%	700	B64290A0084X010	0.96	255.3	267.2	68220	330
N87	2880 ±25%	2200	B64290L0084X087					
N30	5500 ±25%	4200	B64290L0084X830					
T65	6500 ±30%	5000	B64290L0084X065					

N87: P_V (100 mT, 100 kHz, 100 °C) < 7.8 W/core

¹⁾ On request

R 140 × 103 × 25.0 B64290A0705

 $R 202 \times 153 \times 25.0$ B64290A0711

■ Without coating

R 140 \times 103 \times 25.0 (mm) R 5.512 \times 4.055 \times 0.984 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
140.0 ±3.0	103 ±2.0	25.0 ±1.0	5.512 ±0.118	4.055 ±0.079	0.984 ±0.039	uncoated
143.8 max.	100.2 min.	27.2 max.	5.661 max.	3.945 min.	1.071 max.	coated

Characteristics and ordering codes

Mate-	A _L value	μ_i	Ordering code	Magneti		Approx.		
rial		(approx.)		ΣΙ/Α	l _e	A _e	V e	weight
	nH			mm ^{−1}	mm	mm ²	mm ³	g
K10	1100 ±25%	700	B64290A0705X010	0.82	375.8	458.9	172440	860
N87	3400 ±25%	2200	B64290L0705X087					
N30	6200 ±25%	4000	B64290L0705X830					
T37	8400 ±25%	5500	B64290L0705X037					

N87: P_V (100 mT, 100 kHz, 100 °C) < 20 W/core

■ Without coating

R 202.0 \times 153 \times 25.0 (mm) R 7.953 \times 6.024 \times 0.984 (inch)

Dimensions

d _a (mm)	d _i (mm)	Height (mm)	d _a (inch)	d _i (inch)	Height (inch)	
202.0 ±4.0	153.0 ±3.0	25.0 ±1.0	7.953 ±0.157	6.024 ±0.118	0.984 ±0.039	uncoated
207.0 max.	149.0 min.	27.5 max.	8.150 max.	5.866 min.	1.083 max.	coated1)

Characteristics and ordering codes

Mate-	- ' '		Ordering code	Magneti	c charact	eristics		Approx.
rial		(approx.)		ΣΙ/Α	l _e	A _e	V _e	weight
	nH			mm ⁻¹	mm	mm ²	mm ³	g
K10	970 ±25%	700	B64290A0711X010	0.90	550.5	608.6	335030	1600
N30	5200 ±25%	3700	B64290A0711X830					

¹⁾ On request

General information

Examples of final applications of ring core accessories

Application of ring core housings - horizontal / vertical version

Application of ring core base plate

Epoxy coated ring cores and accessories is ideal combination for current-compensated chokes. Combination of various wire diameters and hole/pin arrangement offer many alternatives of application.

Base plate for ring cores

B64293

Preliminary data

Base plate for ring cores

Material: GFR polycarbonate UL94 V-0

Makrolon 9415 [E41613], color code blue, Fa. BAYER MATERIALSCIENCE AG

Base pla	ate				Ordering code
Figure			Lead spacing mm	Holes	
а	40.4 × 20.5	1.1	22.86 × 15.24	4	B64293A1000X000
	40.4 × 20.5	1.4	22.86 × 15.24	4	B64293A1100X000
b	Ø 47.8	1.7	see picture	8	B64293A1200X000 ¹⁾
С	Ø 64.0	2.9	see picture	6	B64293A1300X000 ²⁾
	Ø 64.0	2.1	see picture	6	B64293A1400X000 ²)

¹⁾ Combination with ring core housing B64291A1704X000

²⁾ Hole diameter 1.0 ... 3.1 mm possible

Base plate for ring cores

B64293

FUS0176-V

Preliminary data

Figure a

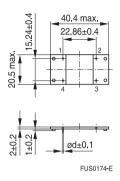
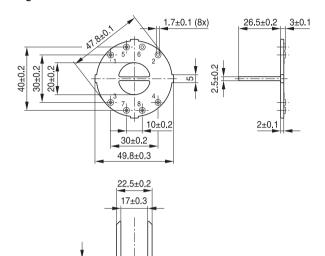
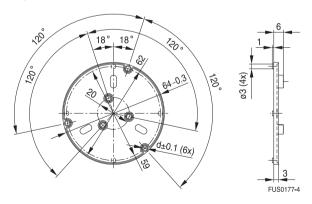




Figure b*)

*) Combination with ring core housing B64291A1704X000

Figure c

Housings for ring cores

B64291

Preliminary data

Housings for ring cores – horizontal version

Material: B64291A: GFR polycarbonate UL94 V-0

Makrolon 9415 [E41613], color code blue, BAYER MATERIALSCIENCE AG

B64291B: GFR liquid crystal polymer UL94 V-0 Vectra E130i [E83005], color code natural, TICONA

Solderability (lead-free): to IEC 60068-2-20, test Ta, + 245 \pm 5 °C, 3 \pm 0.3 s

Resistance to soldering heat (wave soldering): to IEC 60068-2-20, test Tb, \pm 260

 \pm 5 °C, 10 \pm 1 s

Housing	s – horizontal versio	า			Ordering code
Figure	Inner diameter mm	Height mm	Lead spacing mm	Pins	
а	11.6	9.6	10 × 10	4	B64291A1004X000
b	12.0	8.0	see picture	8	B64291B1008X000
С	20.4	13.3	20 × 12.5	4	B64291A1104X000
d	26.0	16.8	25 × 15	4	B64291A1204X000
е	30.0	19.7	30 × 20	4	B64291A1304X000
f	30.0	25.0	30 × 20	4	B64291A1404X000
g	39.3	25.0	15 × 40	4	B64291A1504X000
h	39.3	30.0	15 × 40	4	B64291A1604X000
i	48.0	32.0	_	_	B64291A1704X000 ¹⁾
j	70.6	39.1	_	_	B64291A1804X000

¹⁾ Combination with base plate B64293A1200X000

Housings for ring cores

B64291

Preliminary data

Figure a

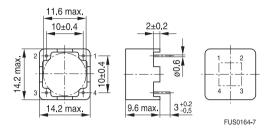
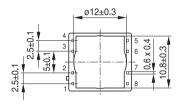
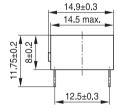




Figure b

Housings for ring cores

B64291

Preliminary data

Figure c

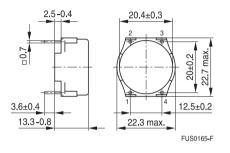


Figure d

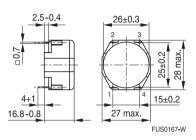


Figure e

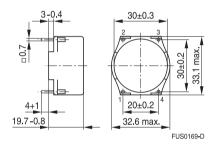


Figure f

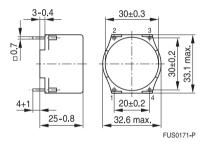
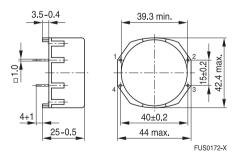



Figure g

Housings for ring cores

B64291

Preliminary data

Figure h

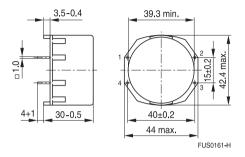
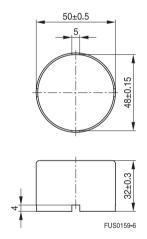
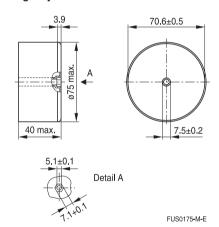




Figure i*)

*) Combination with base plate B64293A1200X000

Figure j

Housings for ring cores

B64292

Preliminary data

Housings for ring cores - vertical version

Material: B64292A: GFR polycarbonate UL94 V-0

Makrolon 9415 [E41613], color code blue, BAYER MATERIALSCIENCE AG

B64292B: GFR liquid crystal polymer UL94 V-0 Vectra E130i [E83005], color code natural, TICONA

Solderability (lead-free): to IEC 60068-2-20, test Ta, + 245 \pm 5 °C, 3 \pm 0.3 s

Resistance to soldering heat (wave soldering): to IEC 60068-2-20, test Tb, \pm 260 \pm 5 °C, 10 \pm 1 s

s – vertical version				Ordering code
Inner diamensions	Height	Lead spacing	Pins	
mm	mm	mm		
11.9 × 6.0	14.0	10.0 × 7.5	4	B64292A1004X000
11.9 × 6.0	14.0	10.0 × 7.5	4	B64292B1004X000
11.9 × 6.0	14.0	see picture	8	B64292A1008X000
21.0 × 10.5	25.4	10.0 × 12.5	4	B64292A1104X000
25.7 × 13.2	30.5	12.5 × 15.0	4	B64292A1204X000
29.0 × 11.3	33.2	12.5 × 15.0	4	B64292A1304X000
38.3 × 13.3	40.0	12.5 × 17.5	4	B64292A1404X000
	Inner diamensions mm 11.9×6.0 11.9×6.0 11.9×6.0 21.0×10.5 25.7×13.2 29.0×11.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ B64292A1604X000 with unsymetrical lead spacing (12.7 × 2.54/5.08 mm)

Housings for ring cores

B64292

Preliminary data

Figure a*)

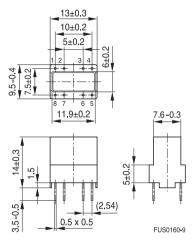
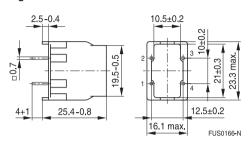
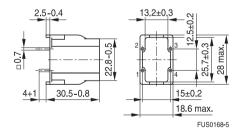
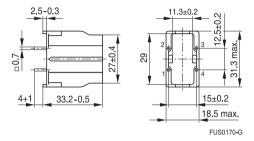




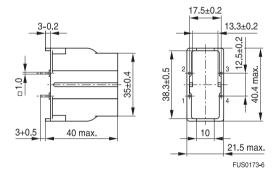
Figure b

*) For 4 PIN version B64292A1004X000 and B64292B1004X000 PIN 2, 3, 6 and 7 omitted

Figure c



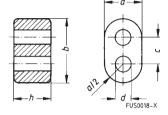
Housings for ring cores


B64292

Preliminary data

Figure d

Figure e


Double-aperture cores

B62152

Primarily used for broadband transformers up to high frequencies

Application examples

- SIFERRIT material N30 for low frequencies and for pulse applications
- SIFERRIT material K1 for matching transformers and baluns up to about 250 MHz in antenna feeders or in input circuits of VHF and TV receivers

Dimension	s ¹⁾				Magne	tic chara	acteristic	cs	Weight
h (mm)	b (mm)	a (mm)	c (mm)	d (mm)	ΣI/A ²) mm ⁻¹	I _e ²⁾ mm	A _e ²⁾ mm ²	V _e ²⁾ mm ³	g
14.5 – 1.0	14.50 – 1.0	8.5 – 0.5	5.85 ±0.25	3.4 + 0.60	0.31	15.3	49.7	760	4.0
8.3 – 0.6	14.50 – 1.0	8.5 – 0.5	5.85 ±0.25	3.4 + 0.60	0.54	15.3	28.4	435	2.5
6.2 - 0.5	7.25 – 0.5	4.2 – 0.4	2.90 ±0.15	1.7 + 0.30	0.75	7.6	10.2	78	0.4
2.5 – 0.2	3.60 - 0.3	2.1 – 0.3	1.45 ±0.10	0.8 + 0.15	1.78	3.7	2.1	7.8	0.1
2.0 - 0.2	3.60 - 0.3	2.1 – 0.3	1.45 ±0.10	0.8 + 0.15	2.20	3.7	1.7	6.3	0.1
1.4 – 0.2	3.60 - 0.3	2.1 – 0.3	1.45 ±0.10	0.8 + 0.15	3.22	3.7	1.2	4.5	0.05

Dimensions with parylene coating³⁾

Core	Max. coated h (mm)	Max. coated b (mm)	Max. coated a (mm)	Min. coated d (mm)
DL 14.5/14.5 /8.5	14.55	14.55	8.55	3.35
DL 8.3/14.5 /8.5	8.35	14.55	8.55	3.35
DL 6.2/ 7.25/4.2	6.25	7.30	4.25	1.65
DL 2.5/ 3.6 /2.1	2.55	3.65	2.15	0.75
DL 2.0/ 3.6 /2.1	2.05	3.65	2.15	0.75
DL 1.4/ 3.6 /2.1	1.45	3.65	2.15	0.75

04/13

¹⁾ Cores made of NiZn ferrite may exceed the specified dimensions by up to 5%.

²⁾ Magnetic characteristics and A_I value are based on winding of center leg.

³⁾ Double-aperture cores are available with parylene coating on request. Ordering code for coated version: B62152P...

Double-aperture cores

B62152

Overview of available types

Core height h (mm)	Material	A _L value ¹⁾ nH (Tol. ±30%)	Ordering code ²⁾
14.5 –1.0	K1	330	B62152A0001X001
8.3 –0.6	K1	190	B62152A0004X001
	N30	10000	B62152A0004X030
6.2 –0.5	K1	140	B62152A0007X001
	N30	7300	B62152A0007X030
2.5 –0.2	K1	60	B62152A0008X001
	N30	3100	B62152A0008X030
	M13	1440	B62152A0008X013
2.0 –0.2	K1	42	B62152A0027X001
	N30	2400	B62152A0027X030
	M13	1100	B62152A0027X013
1.4 -0.2	N30	1600	B62152A0015X030

Magnetic characteristics and A_L value are based on winding of center leg.
 Double-aperture cores are available with parylene coating on request. Ordering code for coated version: B62152P...

Ferrite polymer composites

General information

Ferrite cores are familiar as brittle, rigid and bulky components for high-inductance coils and transformers. The performance of such ferrites depends very much on external influences such as temperature, pressure, electromagnetic fields and frequency.

FPC is a homogeneous mixture of ferrite powder and plastic with outstanding mechanical and magnetic properties. This rugged material can be processed into injection-molded parts or thin, flexible film to open up innovative applications.

The new C351 film is suitable for high-temperature applications up to 200° C and is UL 94-V0-listed. It is also available with copper coatings of 35 to 75 μ m and in various thicknesses from 0.2 to 0.4 mm. FPC film of materials C350 and C351 can also be supplied in self-adhesive versions.

FPC film is ideal for EMC applications, e.g. to shield coils against metals or absorb interference at frequencies of 500 MHz and higher. It opens up many other applications, such as implementation of low-profile coils for identification systems and electronic article surveillance in retailing and logistics, for sensors or contactless smart cards. FPC can also be used for compensation of deflection yoke coils in TV picture tubes and computer monitors. This innovative material is also suitable as spacing between ferrite cores – instead of air gaps or non-magnetic films – to suppress leakage fields, for instance, or to adjust the biasing curve.

FPC film

C350, C351 B68450 ... B68452

Basic features

- FPC is a composite material of polymer and ferrite
- FPC film is a thin, mechanically flexible film

Technical benefits

- Stable magnetic characteristics
- Low weight: FPC film is 40% lower in density than ferrite
- High mechanical strength
- Shaping as required: customer-specific solutions possible
- Economy: easy transport and storage, simple, rationalized processing, low mounting volume
- C351 film suitable for high-temperature applications (up to 200 °C)
- Material C351 approved to UL 94-V0 (E 140 693)
- Various film thickness (from 0.2 to 0.4 mm), thickness tolerance ±15%
- Self-adhesive versions
- C351 film with optional copper coatings 35 to 75 µm thick

Applications

- Implementation of low-profile coils, e.g. for
 - identification systems
 - security tags for electronic article surveillance
 - sensors
 - inductive reading of smart cards
- Electromagnetic shielding of coils from metals to prevent interference
- EMC: absorption of radiated emissions at frequencies ≥500 MHz
- Compensation of deflection yokes to correct distortion at the corners of TV screens and monitors
- Spacing between ferrite cores (as a substitute for air gaps or non-magnetic films) for
 - suppression of the leakage field
 - adjustment of the biasing curve

FPC film

C350, C351 B68450 ... B68452

Ordering details

The ordering codes are structured as follows:

1st group	2nd group		3rd group	
Design	Film thickness/width		Copper coating ¹⁾ /material	
B68450 = Film on reel	A = 0.2 mm	0080 = 80 mm	X = Default letter	350 = C350
	B = 0.3 mm			351 = C351
B68451 = Film on reel, self-adhesive				
B68452 = Film on reel, copper-coated				
(only in combination with C351!)				

Material	Thickness (mm)	Extra features	Ordering code
C350	0.2		B68450A0080X350
C351	0.2		B68450A0080X351
C350	0.2	self-adhesive	B68451A0080X350 ²⁾
C351	0.3	self-adhesive	B68451B0080X351 ²⁾

FPC film is supplied in units of 50 m length.

¹⁾ Copper coating only in combination with C351.

²⁾ On request

FPC film

C350, C351 B68450 ... B68452

Physical properties (material values defined on 0.2 mm thick film)

Material	Symbol	Unit	C350	C351 ³⁾
Initial permeability ¹⁾ f = 1 MHz	μ		9 ±20%	9 ±20%
Flux density (near saturation) ¹⁾ H = 25 kA/m f = 10 kHz	B _S	mT	255	255
Remanent flux density ¹⁾ H = 25 kA/m f = 10 kHz	B _r	mT	9	9
Coercive field strength ¹⁾ H = 25 kA/m f = 10 kHz	H _C	A/m	600	600
Relative loss factor ¹⁾ f = 10 MHz f = 1 GHz	tanδ/μ _i		<0.005 <0.400	<0.005 <0.400
Hysteresis material constant	η _B	10 ^{−3} /mT	<2	<2
Temperature coefficient1)	$\alpha = \Delta \mu / \mu \Delta T$	1/K	<5 · 10 ⁻⁵	<5 · 10 ⁻⁵
Density		kg/m ³	2930	2930
Resistivity 1) f = 1 kHz f = 10 MHz	ρ	Ωm	500 100	500 100
Dielectric constant ¹⁾ $f = 1 \text{ kHz}$ $f = 10 \text{ MHz}$	ε_{r}		700 21	700 21
Dielectric strength		kV/mm	1	0.8
Max. operating temperature	T _{max}	°C	120	200
Tensile strength ²⁾	σ_{Z}	N/mm ²	1.5	2.5

¹⁾ T = 25 °C to IEC 51 (CO) 282 2) T = 23 °C and 50% r.h.

³⁾ UL 94, flame class V0 (listed E 140 693)

Ferrites and accessories

Cautions and warnings

Mechanical stress and mounting

Ferrite cores have to meet mechanical requirements during assembling and for a growing number of applications. Since ferrites are ceramic materials one has to be aware of the special behavior under mechanical load.

As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores.

For detailed information see chapter "Definitions", section 8.1.

Effects of core combination on A_L value

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. The higher the stresses are in the core, the lower is the value for the initial permeability. Thus the embedding medium should have the greatest possible elasticity.

For detailed information see chapter "Definitions", section 8.2.

Heating up

Ferrites can run hot during operation at higher flux densities and higher frequencies.

NiZn-materials

The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.

Processing notes

- The start of the winding process should be soft. Else the flanges may be destroid.
- To strong winding forces may blast the flanges or squeeze the tube that the cores can no more be mount.
- To long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
- Not following the processing notes for soldering of the J-leg terminals may cause solderability problems at the transformer because of pollution with Sn oxyd of the tin bath or burned insulation of the wire. For detailed information see chapter "Processing notes", section 8.2.
- The dimensions of the hole arrangement have fixed values and should be understood as
 a recommendation for drilling the printed circuit board. For dimensioning the pins, the group
 of holes can only be seen under certain conditions, as they fit into the given hole arrangement.
 To avoid problems when mounting the transformer, the manufacturing tolerances for positioning
 the customers' drilling process must be considered by increasing the hole diameter.

Ferrites and accessories

Symbols and terms

Symbol	Meaning	Unit
A	Cross section of coil	mm ²
A _e	Effective magnetic cross section	mm ²
A_L	Inductance factor; A _L = L/N ²	nH
A _{L1}	Minimum inductance at defined high saturation (≙ μ _a)	nH
A _{min}	Minimum core cross section	mm ²
A _N	Winding cross section	mm ²
A_R	Resistance factor; $A_R = R_{Cu}/N^2$	$\mu\Omega = 10^{-6} \Omega$
В	RMS value of magnetic flux density	Vs/m ² , mT
ΔΒ	Flux density deviation	Vs/m ² , mT
Ê	Peak value of magnetic flux density	Vs/m ² , mT
ΔÂ	Peak value of flux density deviation	Vs/m ² , mT
B _{DC}	DC magnetic flux density	Vs/m ² , mT
B _R	Remanent flux density	Vs/m ² , mT
B_S	Saturation magnetization	Vs/m ² , mT
C ₀	Winding capacitance	F = As/V
CDF	Core distortion factor	mm ^{-4.5}
DF	Relative disaccommodation coefficient DF = d/µ _i	
d	Disaccommodation coefficient	
Ea	Activation energy	J
f	Frequency	s−1, Hz
f _{cutoff}	Cut-off frequency	s−1, Hz
f _{max}	Upper frequency limit	s⁻¹, Hz
f _{min}	Lower frequency limit	s⁻¹, Hz
f _r	Resonance frequency	s⁻¹, Hz
f_{Cu}	Copper filling factor	
g	Air gap	mm
Н	RMS value of magnetic field strength	A/m
Ĥ	Peak value of magnetic field strength	A/m
H_{DC}	DC field strength	A/m
H _c	Coercive field strength	A/m
h	Hysteresis coefficient of material	10 ⁻⁶ cm/A
h/μ_i^2	Relative hysteresis coefficient	10 ⁻⁶ cm/A
Ι΄.	RMS value of current	Α
I_{DC}	Direct current	Α
î	Peak value of current	Α
J	Polarization	Vs/m ²
k	Boltzmann constant	J/K
k ₃	Third harmonic distortion	
k _{3c}	Circuit third harmonic distortion	
L	Inductance	H = Vs/A

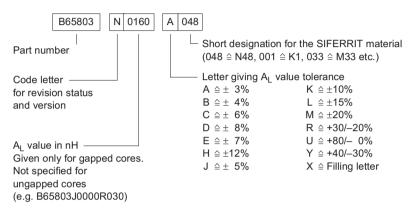
Symbols and terms

Symbol	Meaning	Unit
ΔL/L	Relative inductance change	Н
L_0	Inductance of coil without core	Н
L _H	Main inductance	Н
L _p	Parallel inductance	Н
L _{rev}	Reversible inductance	Н
Ls	Series inductance	Н
l _e	Effective magnetic path length	mm
I _N	Average length of turn	mm
N	Number of turns	
P _{Cu}	Copper (winding) losses	W
P _{trans}	Transferrable power	W
P _V	Relative core losses	mW/g
PF	Performance factor	Ŭ
Q	Quality factor (Q = $\omega L/R_s$ = 1/tan δ_l)	
R	Resistance	Ω
R _{Cu}	Copper (winding) resistance (f = 0)	Ω
R _h	Hysteresis loss resistance of a core	Ω
ΔR_h	R _b change	Ω
R _i	Internal resistance	Ω
R _p	Parallel loss resistance of a core	Ω
R _s	Series loss resistance of a core	Ω
R _{th}	Thermal resistance	K/W
R _V	Effective loss resistance of a core	Ω
S	Total air gap	mm
T	Temperature	°C
ΛT	Temperature difference	K
T _C	Curie temperature	°C
t	Time	s
t,	Pulse duty factor	
tan δ	Loss factor	
tan δ _I	Loss factor of coil	
$\tan \delta_r$	(Residual) loss factor at $H \rightarrow 0$	
tan δ _e	Relative loss factor	
tan δ _b	Hysteresis loss factor	
tan δ/μ _i	Relative loss factor of material at H → 0	
U	RMS value of voltage	V
Û	Peak value of voltage	V
V _e	Effective magnetic volume	mm ³
v _e Z	Complex impedance	Ω
Z _n	Normalized impedance $ Z _n = Z /N^2 \times \varepsilon (I_e/A_e)$	Ω/mm
<u>←</u> n	Tromalized impedance Z n = Z /N= x & (le/Ae)	22/111111

Symbols and terms

Symbol	Meaning	Unit
α	Temperature coefficient (TK)	1/K
α_{F}	Relative temperature coefficient of material	1/K
α_{e}	Temperature coefficient of effective permeability	1/K
ε_{r}	Relative permittivity	
Φ	Magnetic flux	Vs
η	Efficiency of a transformer	
η_{B}	Hysteresis material constant	mT-1
η _i	Hysteresis core constant	A-1H-1/2
λ_{s}	Magnetostriction at saturation magnetization	
μ	Relative complex permeability	
μ_0	Magnetic field constant	Vs/Am
μ_{a}	Relative amplitude permeability	
μ_{app}	Relative apparent permeability	
μ_{e}	Relative effective permeability	
μ_{i}	Relative initial permeability	
μ _p '	Relative real (inductive) component of $\overline{\mu}$ (for parallel components)	
μ _p "	Relative imaginary (loss) component of $\overline{\mu}$ (for parallel components)	
μ_r	Relative permeability	
μ_{rev}	Relative reversible permeability	
μ _s '	Relative real (inductive) component of $\overline{\mu}$ (for series components)	
μ _s "	Relative imaginary (loss) component of $\overline{\mu}$ (for series components)	
μ_{tot}	Relative total permeability	
	derived from the static magnetization curve	
ρ	Resistivity	Ω m $^{-1}$
ΣΙ/Α	Magnetic form factor	mm ⁻¹
τ _{Cu}	DC time constant $\tau_{Cu} = L/R_{Cu} = A_L/A_R$	s
ω	Angular frequency; ω = 2 Π f	s ⁻¹

All dimensions are given in mm.



Symbols and terms

Ordering code structure

RM, P,PQ, EP, ER9,5, ER11 cores

(Example here RM 4)

E, ELP, EQ, ER, ETD, EFD, EV cores

These cores are supplied as single units; each packing unit contains only cores either with or without shortened center leg (gap dimension »g«). The typical value given in the tables for the AL value applies to a core set consisting of one core with a shortened center leg and one core without a shortened center leg (dimension »g« approx. 0). E cores with a toleranced A₁ value are available on request. We then prefer a symmetrical air gap distribution.

Ordering example (here ETD 29)

Symbols and terms

Versions (code letters) of RM cores

Туре	with center hole (without	with center hole (with	without center hole	low-profile version
	threaded sleeve)	threaded sleeve)		
RM 4	A	N	J	Р
RM 5	С	N	J	Р
RM 6	С	N	J	Р
RM 7	Α	N	J	Р
RM 8	D	F	J	Р
RM 10	D	N	J	Р
RM 12	_	_	E	Р
RM 14	_	_	E	Р

Versions (code letters) of P cores

Туре	with center hole (without threaded sleeve)	with center hole (with threaded sleeve)	without center hole
P 3,3 × 2,6	_	_	С
P 4,6 × 4,1	В	_	_
P 5,8 × 3,3	D	_	_
P 7 × 4	A	_	_
P 9 × 5	D	Т	W
P 11 × 7	D	Т	W
P 14 × 8	D	Т	W
P 18 × 11	D	Т	W
P 22 × 13	D	N	W
P 26 × 16	D	Т	W
P 30 × 19	D	Т	W
P 36 × 22	D	Т	W
P 41 × 25	J	_	_

Symbols and terms

Versions (code letters) of E cores

Code letter	Pairing	Code number	Tolerance
G	E-E	Air gap dimensions in μm Not specified for ungapped cores	Air gap toleranced
U	E-E	A _L value in nH	A _L value, asymmetric air gap
A	E-E	A _L value in nH	A _L value, symmetric air gap
W	E – I (for ELP, EQ and ER planar cores)	A _L value in nH	A _L value
Р	I core (plate for ELP, EQ and ER planar cores)	_	_
E	customized set	_	_
F	mirror polished	_	_

Subject index

A		curie temperature	45, 133
accessories, material	119	current-compensated chokes	34
adhesive application	181	customer complaints	196
air gap	169	D	
A _L value	126, 127, 169	D	407
amplitude permeability	126, 134	delivery modes	187
apparent permeability	124	delivery quality	194
application survey	34	design and processing information	180
applications		dielectric constant	138
broadband transformers	144	dimensions	194
EMI	150	dip soldering	180
filter	141	disaccommodation	135
inductive sensors	153	coefficient	135
LAN	148	factor	45, 135
power	154	dispatch unit	184
approval for shipment	194	dispenser pack	190
AQL values	195	disposal	198
automatic placement	180	double-aperture cores	603
automatic processing	187	E	
В		E cores	399
bag packing	186	eddy current losses	131
balun transformer	34	EFD cores	539
bandwidth	144	effective magnetic cross section	127
barcode label	184, 195	effective magnetic length	127
batch number	194	effective magnetic volume	127
blister packing	185, 187	effective permeability	123
blister tapes	189	effective temperature coefficient	134
block packing	185	electronic lamp ballast devices	34
boxes packing	186	ELP cores	456
broadband transformers	144	EMI applications	150
		energy meters	34
C		environmental	
cardboard tray	186	certification	197
certification	192	management system	197
chamfer	562	policy	197
chokes	34	EP, EPX, EPO cores	303
coefficient of linear expansion	136	EQ cores	488
coercive field strength	45, 122	ER cores	509
common-mode chokes	149, 151	ER planar cores	497
complex permeability	124	ETD cores	517
compressive strength	136	EV cores	550
conditions of use	196	excitation	123
container packing	186	_	
coplanarity	180	F	
copper factor	140	ferrimagnetic	121
core losses	131	ferrite polymer composites	605

Subject index

ferromagnetic	121	M	
filter applications	141	M13	56
final adjustment	182	M33	57
final inspection	194	magnetic core shape characteristics	127
finish	195	magnetic field constant	122
form factor	127	magnetic field strength	121
FPC	44	magnetic flux density	121
fracture toughness	136	magnetostriction	138
•		material data sheets	198
G	404	material properties	35
gullwing terminals	181	measuring conditions	45
Н		mechanical properties	136
high voltage transformers		modes of packing	185
and power chokes	34	modulus of elasticity	136
high-excitation range	131	M	
hysteresis	121	N	
hysteresis loss resistance	130	N22	59
hysteresis material constant	45, 130	N27	60
	•	N30	63
I		N41	65
IEC standards	199	N45	68
impedance and matching transforme		N48 N49	70 72
important notes	2	****	
incoming goods inspection	194	N51	75 70
inductance	127	N72	78 81
inductance factor	127	N87 N88	84
inductive proximity switches	34	N92	88
inductive sensors	153	N95	91
inductor assembly	180	N96	94
initial magnetization curve	121, 122	N97	94
initial permeability	45, 123	normalized impedance	51
J		number of turns	170
J terminals	181	number of turns	170
o terriiriais	101	0	
K		ordering code structure	614
K1	52	ъ	
K10	55	Р	
K8	54	P core halves	387
		P cores	335
L		packing	183
lamp ballast device	159	packing for coil formers	186
LAN applications	148	packing unit	184
line attenuation	34	PC47	100
loss factor	129	performance factor	49, 132
lot (batch) number	194	permeability	123
low profile	201	permeability factor	134

Subject index

planar devices plastic materials PM cores polarization power applications power capacities power transformers and chokes PQ cores processing notes SMD components production sequence proximity effect proximity switch PS cores push-pull converter	154, 167 119 288 121 154 160 34 269 169 180 187, 192, 193 131 153 387 158	single-ended forward converter skin effect skin packing small-signal range SMPS transformer cores Snoek's law solder paste application soldering soldering time specific heat standard tray standardized hysteresis material constant versus temperature step-down stress sensitivity	157 131 191 129 160 125 181 180 136 185 50 155 137
Q		т	
quality assessment quality assurance quality factor quality management quality system	200 192 130 192 192	T35 T36 T37 T38	103 105 107 109 111
R		T57	113
radiation	138	T65	115
radio-frequency transformer	34	T66	117
relative inductance component		temperature coefficient of permeability	133
versus frequency	48	tensile strength	136
relative loss factor	45, 47, 129	thermal conductivity	136
relative permeability	122	thermal resistance	168
relative temperature coefficient	45	threaded sleeve	142
reliability	194		, 304
remanent flux density	122	toroids	561
residual air gap resistance factor	169 140	traceability	194
resistivity	138	transformers for digital data transmission	145
reversible permeability	125	tray (pallet) packing	185
ring cores accessories (toroids)	593	U	
ring cores (toroids)	561	U and UI cores	553
RM cores	201	UL numbers	119
S		V	
saturation magnetization	122, 134	vickers hardness	136
saturation-dependent permeabilit	•	W	
(amplitude permeability)	134	• •	404
secondary permeability maximum		Weiss' domains	121
single-ended flyback converter	156	winding	170

Get in Contact

Europe

Austria, Bulgaria, Greece, Macedonia

FPCOS OHG Vienna/Austria T +43 51 70 72 56 37

F +43 51 70 75 56 45 sales.csee@epcos.com

Czech Republic

EPCOS s.r.o. Prague T +420 2 33 03 22 81 F +420 2 33 03 22 89 sales.czech@epcos.com

Finland, Estonia **EPCOS Nordic OY** Espoo

EPCOS SAS

T +358 9 54 80 70 00 F +358 9 54 80 70 01 sales.nordic@epcos.com

France, Belgium, Luxembourg, Malta

Pantin/France T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@epcos.com

Germany, Liechtenstein, Netherlands, Switzerland **EPCOS AG**

Customer Service Munich/Germany T (D) 0180 500 33 48 (0.14 Euro/min.) (NL) +31 70 33 10 611 (CH) +49 89 5 40 20 26 91

F +49 89 5 40 20 29 13 sales.germany@epcos.com

Hungary

FPCOS Flektronikai Alkatrész Kft. Budapest T +36 1 436 07 20

F +36 1 436 07 21 sales.hungary@epcos.com

Italy

TDK-EPC Italy S.r.l. Milan T +39 02 50 99 54 25

F +39 02 50 99 54 55 sales.italy@epcos.com

Poland, Latvia, Lithuania EPCOS Polska Sp. z o.o Warsaw/Poland

T +48 22 24 60 409 F +48 22 24 60 400 sales.poland@epcos.com Portugal

EPCOS 2 Portugal LDA Évora T +351 91 75 67 927 F +351 21 49 33 476 sales.portugal@epcos.com

Romania EPCOS Sales Representative

Timisoara

T +40 72 31 14 111 sales.romania@epcos.com

Russia, Belarus, Kazakhstan, Moldavia, Ukraine

EPCOS LÍ C Moscow/Russia T +7 495 663 21 00 / 22

sales.cis@epcos.com

Slovakia

EPCOS Sales Representative Dolný Kubín T +42 1 43 5 82 36 73

F +42 1 43 5 82 37 33 sales.slovakia@epcos.com

Slovenia, Serbia, Croatia, Bosnia & Herzegovina, Montenegro

EPCOS Sales Representative Škofljica/Slovenia

T +386 599 56 35 3 F +386 599 56 35 4 sales.slovenia@epcos.com

Spain **EPCOS Electronic Components** S.A.

Getafe

T +34 91 514 71 61 F +34 91 514 70 14 sales.iberia@epcos.com

Sweden, Iceland, Denmark, Norway

EPCOS Nordic AB Kista/Sweden T +46 8 4 77 27 00 F +46 8 4 77 27 01 sales.nordic@epcos.com

Turkey

EPCOS AG Liaison Office Istanbul

T +90 216 5 69 81 01 F +90 216 4 64 07 56 sales.turkey@epcos.com

United Kingdom, Ireland EPCOS UK Ltd.

Bracknell/UK T +44 13 44 38 15 10 F +44 13 44 38 15 12 sales.uk@epcos.com

Asia

Afghanistan, Iran, Iraq, Jordan, Lebanon, Pakistan, Syria FPCOS AG Liaison Office Istanbul/Turkey T +90 216 5 69 81 01

F +90 216 4 64 07 56 sales.turkev@epcos.com

EPCOS (China) Investment Ltd. EPCOS (Shanghai) Ltd. Shanghai

T +86 21 22 19 15 00 F +86 21 22 19 15 99 sales.cn@epcos.com

Hong Kong EPCOS Limited Hong Kong T +852 36 69 82 00 F +852 36 69 82 56 sales.cn@epcos.com

India, Bahrain, Bangladesh, Kuwait, Nepal, Oman, Qatar, Saudi Arabia, Sri Lanka, United Arab Émirates EPCOS India Private Ltd.

Bangalore/India T +91 80 40 39 06 15 F +91 80 40 39 06 03 sales.in@epcos.com

Nisko Projects Electronics & Communications (1999) Ltd.

T +972 37 65 73 00 F +972 37 65 73 33 sales.israel@epcos.com

Japan TDK-EPC Corporation

Tokyo T +81 3 52 01 72 41 F +81 3 52 01 72 62 inquiry@jp.tdk.com

TDK-EPC Korea Co. Ltd. Seoul

T +82 2 21 56 68 18 F +82 2 21 56 68 98 sales.kr@epcos.com

Malavsia EPCOS RDC SDN BHD Nilai

T +60 6 79 98 168 F +60 6 79 98 162 sales.asean@epcos.com

Philippines

c/o TDK Electronics Philippines Corporation Biñan

T +63 49 541 31 41 66 30 / 31 F +63 49 541 31 40 sales asean@epcos.com

Singapore, Indonesia, Thailand, Vietnam EPCOS PTE LTD

Singapore T +65 68 41 20 11 F +65 67 44 69 92 sales.asean@epcos.com

Taiwan

EPCOS Taiwan Co. Ltd. Taipei T +886 2 26 55 76 76 F +886 2 27 82 03 89 sales.tw@epcos.com

Americas

USA, Canada, Mexico

EPCOS, Inc. Iselin, NJ/USA T +1 732 9 06 43 00 F +1 732 9 06 43 95 sales.usa@epcos.com

South America

EPCOS do Brasil Ltda. São Paulo/Brazil T +55 11 36 12 51 87 F +55 11 36 12 51 65 sales.br@epcos.com

Australia

Australia, New Zealand Electronic Component

Solutions Pty Ltd Melbourne/Australia T +61 3 85 61 19 99 F +61 3 95 74 70 55 sales.au@epcos.com

Africa

Egypt
EPCOS AG
Liaison Office
Istanbul/Turkey
T +90 216 5 69 81 01
F +90 216 4 64 07 56

Morocco, Tunisia

EPCOS SAS Pantin/France T +33 1 49 46 67 89 F +33 1 49 46 67 67 sales.france@epcos.com

sales.turkey@epcos.com

South Africa

South Arrival
Electrocomp (PTY) Ltd.
Sandton
T +27 11 458 90 00 32
F +27 11 458 90 34
sales.southernafrica@epcos.com

The addresses of our worldwide distributors and regional sales offices are available at www.epcos.com/sales